
The PoS Tagger of Turin University

Leonardo Lesmo

Dipartimento di Informatica, Università di Torino

Corso Svizzera 185, I-10149 Torino, Italy

lesmo@di.unito.it

Abstract. This paper describes the Part of Speech Tagger that is part of the

parsing system of Turin University. The PoS Tagger is based on a set of

disambiguation rules developed manually. The rules are grouped into ambiguity

sets, each of which is associated with a set of PoS. Some intra-category rules

are defined to assign features to words. The paper includes a brief description of

the morphological analyzer, and then focuses on the PoS Tagger organization.

Keywords: Rule-based systems, Part of Speech Tagging

1 Introduction

The PoS Tagger that is presented here is one of the components of a parsing system

that produces a dependency tree for each sentence composing an input text. The

organization of the parser and its results in the Evalita 2009 Parsing Task are

described in [1]. The system includes a number of modules, some of which will not be

presented here, since this description will be focused on the step that takes as input a

list of possibly ambiguous items that contain various kinds of morphological

information and chooses the best lexical hypothesis. The morphological analyzer will

be briefly overviewed here, while all parsing steps that follow the application of the

PoS Tagger will be skipped (see [1]).

A scheme of the whole system is reported in fig.1. All modules not included in the

dashed box are described in some detail in [1].

Since this paper acts more as a system description than as a full scientific paper, we

will not attempt here to survey the literature on PoS Tagging, which would require

more space and an introduction to statistical approaches; the interested reader is

addressed to the [2], and to the references cited therein.

The paper is organized as follows. In the next section, we briefly present the

morphological analyzer that provides the input to the PoS Tagger. In the third section,

we describe the organization of the tagger. In the fourth one, we discuss the

performances of the tagger in the Evalita 2009 contest. A short Conclusion section

closes the paper.

Fig. 1. Architecture of the parser (including components not described in this paper)

2 Morphological analysis

2.1 Tokenization

The input text consists in a sequence of characters (encoded either in ISO-Latin-1 or

UTF-8) and undergoes a first step of tokenization. The tokenizer splits the text in

words and sentences, and returns a sequence of (possibly ambiguous) token items.

The procedure is based on an automaton that scans the sequence of characters and

emits hypotheses about standard words, numbers, punctuation marks, abbreviations,

and so on. Each token item is composed of a sequence of characters and a Token

Type. The existing token types are: GW (general word), NOMEP (proper names),

SIGLA (abbreviations, codes, initials), NUMBER (numbers, in digits), DATE (dates in

a standard forms, as 18/01/2009), SEGNOINTER (punctuation marks), SPECIAL

(other symbols, e.g. @), PARAGRAPH-NUMB (chapter or paragraph numbers, in dot

notation, as 3.1.3.), YEAR (just for forms as ’03, standing for 2003).

Possible ambiguities may arise for strings as “Barbara.”. In this case, the output is

the one shown in Table 1. The first token item includes two components: the first for

the GW “barbara” (barbarianf,sing), and the second for the period (SEGNOINTER).

The second item is similar, but the first component concerns the proper name

“Barbara”. The third item refers to the hypothesis that “Barbara.” is a single code,

Sequence of sets of Lexical Items

Morphological tables

POS TAGGING

POST PROCESSING

CHUNKING

COORDINATION ANALYSIS

Dictionary

INPUT TEXT

MORPHOLOGICAL ANALYSIS

Chunking Rules

Verbs + Partial Chunks

Verbs + Final Chunks

Partial Parse Trees

Subcategorization

 Frames
ANALYSIS OF VERBAL DEPENDENTS

PARSE TREES

MORPHOLOGY

AND TAGGING

PoS tagging rules

Sequence of single Lexical Items

including the period (as “Mr.”). The final output is a sequence of items (see Table 1),

which are then sent to the morphological analyzer for the access to the dictionaries1.

Table 1. Tokenizer output for the string “Barbara.”

((((98 97 114 98 97 114 97) GW) ** first tokenizer item
 ((46) SEGNOINTER))
 (((66 97 114 98 97 114 97) NOMEP) ** second tokenizer item
 ((46) SEGNOINTER))
 (((66 97 114 98 97 114 97 46) SIGLA))) ** third tokenizer item

2.2 Dictionaries

Each tokenizer item is used for accessing the dictionaries that constitute the lexical

knowledge sources used by the parser. The base dictionary concerns general words

and is indexed on word roots (stems). It includes 23.850 roots that correspond to

24.280 “normalized forms”. The number of lemmata is slightly greater than that, since

a single “normalized form” can correspond to more than one lemma (as, for instance,

“corso”, which is both a noun and an adjective, i.e. “avenue” and “Corsican”). For

instance, the dictionary entry associated with the stem “cors” is the following:

(cors ((corso cat noun classe (2))

 (corsa cat noun classe (1))

 (corso cat adj classe (1))

 (correre cat verb classe (8 (c (1 3 6) i))))

There are four entries: the first one for the noun „corso‟ (avenue), the second one

for the noun „corsa‟ (run), the third one for the adjective „corso‟ (Corsican), the last

one for the verb „correre‟ (to run). The classe information refers to the possible

affixes that can be attached to the root to produce the various forms. For instance, the

second nominal class is associated with -o (masculine singular) and -i (masculine

plural). For verbs, it is possible to specify the tenses to which the stem applies. In the

example, it is said that this stem is used for the first person singular (1), for the third

person singular (3) and for the third person plural (6) of the past (c) and for the past

participle (i). The affixes are the ones associated with class 8 (e.g. cors-i, cors-e, cors-

ero for the past). The information about the affix classes is stored in a separate file,

where 21 adjectival classes, 32 nominal classes and 12 verbal classes are defined.

Apart from the base morphological dictionary, other dictionaries are in use:

1. Italian proper names (e.g. Giuseppe, Parigi, …): 248 entries

2. Language-independent proper names (e.g. London, Joyce, …): 384 entries

3. Multi-word expressions (e.g. „a prima vista‟ – at first sight): 322 entries

4. Italian multi-word proper names (e.g. „Costa d‟Avorio‟ – Ivory Coast): 56 entries

5. Language-independent multi-word proper names (e.g. Los Angeles): 130 entries

1 A second automaton takes care of the analysis of numbers written in letters, as

“threehundredfortyfive”. The tokenizer automaton includes 89 nodes, while the numbers

automaton includes 88 nodes.

3 Part of Speech Tagging

After the morphological analysis, we know, for each input item, the set of possible

interpretations. For instance, if the input word is corso, we have:

(corso ((corso cat noun gender m number sing)

 (corso cat adj gender m number sing)

 (correre cat verb mood participle tense past gender m number sing)))

Where the various features are obtained on the basis of the class and of the suffix +o

(cors+o). The entry shown above licenses three possible PoS: noun, adj, verb. They

form the ambiguity set of the entry. For each ambiguity set, a group a rules and a

default category are defined (for instance, the ambiguity set of adj+noun+verb

includes 38 rules and the default is noun).

The sequence of word interpretations is scanned from left to right. For each word,

the ambiguity set is determined and the corresponding packet is activated.

Each rule has the following form:

 if condition then category CF certainty-factor

Where the „condition‟ is described below, „category‟ is one of the categories to which

the packet is associated and „certainty-factor‟ is one of C (Certain), A (Almost

certain), and U (Uncertain). Since the first rule that fires is the one used to choose the

category, the certainty factor provides a very rough way to define the order of

application of the rules. For rules having the same certainty factor, the order in which

they are listed (manually) defines the order of application. An example of rule is:

 if (AND (nextcat-agr noun adj)

 (not (currword-typ &adj-pref-noun))

 (prevcat verb))

 then noun

 CF U

This example enables us to present the main features of conditions for rule

application. The usual logical operators AND, OR, NOT can be used to build complex

conditions on the basis of elementary predicates. The latter can involve:

a. the inspection of the features of the word under analysis

b. the inspection of the categories and features of the two preceding and following

words (possibly enforcing some agreement check). This may require the access

to a dedicated KB of special words2

c. in very limited cases, the search for an item in the whole sentence, as, for

instance, a final question mark.

Before providing some examples of elementary predicates, it is worth having a

look at the KB of special words. It includes 198 groups of words, whose role is to act

as syntactic sub-sub-categories, some of which have a semantic flavor. An example of

the latter is the category &title, that includes the words ministro, presidente, signore,

commissione, dottore, commendatore. A more syntactically oriented class is &conj-

governing-subjunctive, including the words purché and affinché, which are

conjunctions governing sentences whose verb should be in the subjunctive mood.

2 Actually, this KB is also used in various modules of the parser

With respect to elementary predicates, since the PoS Tagger proceeds strictly left-

to-right, all checks on preceding words refer to items already disambiguated, while

the tests on the following words refer to possibly ambiguous items.

Examples of the first type of predicates are:

- (currmood args), which checks if the mood of the current word (a verb) is

among the ones in args.

- (currtype args), which checks if the type (subcategory) of the current word is

among the ones in args.

Examples of the second type are:

- (nextcat-agr next-cat current-cat), which checks if among the possible

interpretation of the next word there is one item of category next-cat, and that

item agrees (usually in gender and number) with the interpretation of the current

word of category current-cat.

- (prev2word-typ subsubcat), which checks if the (already disambiguated) word

that occurs two words before the current one belongs to the group subsubcat.

Examples of the third type are3:

- (interr-sent), which checks if the sentence under analysis includes an

interrogative marker (that, for Italian and English is a final question mark).

- (beforecat category) which checks if in a larger window before the current word

(currently defined as 10 words) there occurs a word of category category.

Before closing this section, we mention the existence of intra-category rules. They

have the same format seen above, and are applied in case more than one interpretation

is associated with a given category. An example of packet of this type is verb-main-

aux, that contain rules for disambiguating between the auxiliary and non-auxiliary

interpretations of the verbs essere (to be), avere (to have), etc.

4 The PoS Tagger at Evalita 2009

Although the PoS Tagger, in the context of the whole parsing system, usually works

rather well, its rank in the Evalita 2009 Tagging Task was rather low (6
th

 among 8

participants). In this section, we try to account for this result, by analyzing in some

details the errors made by the tagger. The total number of errors is 199 on a test set of

4919 words, i.e. 4.05%. The resources used by the tagger in Evalita are the same that

it uses during normal operations, with the exception of the dictionary of multi-word

expressions. This was done in accordance with the data in the development set, but

had some negative consequences, as we will see below.

Unknown words. The first point to notice is that currently the tagger does not handle

unknown words. A simple way to face the problem would be to assign to all unknown

words an ambiguity set consisting in all (or most) open classes (i.e. verb, noun, adj,

adv) and make the tagger apply the standard rules of this class. However, this

approach requires some tests and we wanted to avoid architectural changes made only

in the specific context of Evalita. So, unknown words undergo just a post-processing

step, where words ending with a consonant are supposed to be foreign words. There

were 48 errors due to unknown words plus 6 errors concerning foreign words. Eight

3 Currently, there are only 18 occurrences of predicates of this type in the whole set of rules

of these errors are due to the non-use of multi-words. For instance, there are 5

occurrences of “a seconda di/che” (according as), where the required adverbial

interpretation of “seconda” does not exist out of this context, so that it was incorrectly

classified as an adjective (second). With respect to foreign words, the tag FW was

taken as wrong for the word “sir” (2 occurrences).

Participles vs. adjectives. 10 errors are due to the wrong tagging of participles as

adjectives, or viceversa. Although the criterium adopted by the organizers (the

absence of a depending phrase implies adjective, otherwise verb) is reasonable, there

are some cases that are at least dubious. An example is “sono basate sulla rilevazione”

(are based on the survey), where “basate” seems to be an adjective, and not a verb.

Gender. 6 errors are due to the use of the „n‟ (neuter) feature of nouns. For instance

“via” (road or start) is tagged as „n‟, because the two senses of the word are one

feminine and one masculine. However, the same does not happen for “varietà”

(variety or variety show), which is tagged in the Gold dataset as feminine.

Gold errors. There are 12 errors in the Gold dataset, where we also include

disagreements with the Development set. A noticeable case refers to 4 occurrences of

the „single quote‟ mark („), which is consistently tagged in the development set as FB,

whereas they are tagged as FF in Gold.

Of course, most of the difficulties listed above are common to all participants to

the Tagging task, so nothing changes about the rank of the Turin tagger. This only

helps explaining the difference between the standard performances of the tagger

(which are consistently above 96.5%) and the ones obtained for Evalita (95.95%)

5 Conclusions

We do not have information about the organization of the other PoS Tagger

participating in Evalita 2009, but it is reasonable to assume that they are based on

statistical techniques. The overall results seem to confirm that rule-based and

statistics-based system achieve comparable level of performances. One of the point

that must be stressed is that Evalita 2009 was particularly useful for us, since it

enabled us to identify the main shortcomings of the system. Apart from the mentioned

troubles on unknown words, many residual errors are real tagging errors that were not

revealed by the tests on the Turin corpora. An example concerns the occurrence of

quotation marks, that very often, but not always, should be disregarded to obtain the

correct tag. We look forward to the next Evalita contest to get even better results.

References

1. Lesmo, L.: The Turin University Parser at Evalita 2009. In: Proceedings of EVALITA 2009

(2009)

2. Voutilainen, A.: Part-of-Speech Tagging. In: Jurafsky, D., Martin J. H.: Speech and

Language Processing (2nd Ed). Prentice Hall, pp.219-232 (2008)

