Bidirectional Sequence Classification for Named
Entities Recognition

Andrea Gesmundo

Univ Geneva, Dept of Computer Science and Dept of Linguistic,
route de Drize 7, 1227 Carouge, Switzerland
andrea.gesmundoQunige.ch

Abstract. With this paper is presented a system for Named Entities
Recognition, based on the Perceptron Algorithm. In the proposed frame-
work, the order of the inference is not forced into a monotonic behavior
(left-to-right), but is learned together with the parameters of the local
classifier. The system tested on the task of Italian NER at EVALITA
2009 obtained the second position, with an F1 measure of 81.46%.

Key words: Guided Learning, Perceptron, NER.

1 Introduction

Named Entities Recognition is a subtask of Information Extraction. The goal of
this task is to locate and classify chunks of words that identify names of persons,
organizations, geo-political entities or locations. NER is defined as a chunking
task, but following the general guidelines of [1] we can solve it as a tagging task.
The system described in this paper carries out NER as a tagging task applying a
semi-supervised training approach. In particular we extend the Guided Learning
(GL) framework presented in [2]. This approach is more complex than supervised
learning. The system can learn the parameters for the local classifier from gold
standard labels, but has no indications on the order of inference.

Compared to others approaches, GL shows some advantages, it does not
suffer from the label bias problem [3]. Basing the learning algorithm on the
Perceptron scheme allows one to keep a low system complexity and moderate
execution time, without sacrificing learning capability and quality of the results.
Compared to others systems that use a Perceptron algorithm, like [4], GL intro-
duces a bidirectional search strategy. Instead of forcing the order of the tagging
in a left-to-right fashion, any tagging order is allowed. It follows a easiest-first
approach and incorporates the learning of the order of inference in the training
phase. In this way right-context and bidirectional-context features can be used
at little extra cost. Following [5] we apply a voting system between multiple data
representation of text chunks, this technique consists of training one instance of
the system for each version of the same corpus represented with different chunks
representations, and then merging the predictions obtained from the systems
with a voting method.

As shown by the results obtained in Evalita 2009 NER, Shared Tasks and in
[2] [7] and [8], GL is a framework that can be adapted to a variety of tagging
tasks, ensuring state of the art results and short training times.

2 Bidirectional Guided Classification

In this section we present the Inference Algorithm and the Training Algorithm.

2.1 Inference Algorithm

As input to the Inference Algorithm we have a sequence of tokens ¢1ts - - - t,,. For
each token t;, we have to assign a label [; € L, with L being the label set. A
subsequence t; - --t; is called a span, and is denoted [i,j]. To each span s are
associated one or more hypotheses, composed by a sequence of length |s| over L.

The labels located at the boundaries of an hypothesis sequence are used as
context for labeling tokens outside the span s. In our case a trigram model is
used, so when choosing the label for the token ¢; we can use the two boundary
labels (I;41,li+2) of the right span [i + 1,j] if this has already been tagged.
Similarly, we can use the two labels (I;_2,1;—1) as left context for the current
tagging operation in the case that the left span [k,i — 1] is available. We will
refer to the left two label as the left interface Ijcs;, and to the right two labels
as the right interface I,;gns.

We denote the boundaries of a span s with b = (Lje 4, Iright)y b contains the
labels relevant for the tagging of neighboring tokens. We partition the hypotheses
associated with span s into sets compatible with the same boundaries b. For each
span s we use a table M indexed by all possible b, so that M(b) is the set of
all hypotheses associated with s that are compatible with Ijc¢; and Irigns.

For a span s, we denote the associated top hypothesis with:

hy = argmax V(h) (1)
he M, (b),Vb: M, (b)#0

where V is the score function of a hypothesis.

Spans are started and grown by means of tagging actions. Three kinds of
actions are available: it is possible to start a new span by labeling a token with no
context, or expand an existing span by labeling an adjacent token, or merging two
spans by labeling the token between them. In this last case the two originating
spans would be subsequences of the resulting span, and the labeling action of
the token between the spans will use both right and left context information.

For each hypothesis h associated with a span s, we maintain its most recent
tagging action a(h), and the hypotheses, if any, that have been used as left
context h} (h) and right context hf(h).

We can now define the score function for hypotheses in a recursive fashion:

V(h) = V(hL(h)) + V(hR(h)) + Ula(h)) (2)

The score of the current tagging action U(a(h)) is added to the score of the
top hypotheses that might have served as context and have been merged in the
new hypothesis. The score of the labeling action U(a(h)) is computed through
a linear combination of the weight vector w and the feature vector of the action

f(a(h)):
Ula(h)) = w- f(a(h)) 3)

To reduce the search space explored during the inference algorithm we apply
a beam search strategy. The beam width B determines the maximum number
of boundaries b maintained for each span s. The value of B is given as input, as
the weight vector w used to compute the score of an action.

The algorithm works using two groups of spans: P is the list of accepted
spans, and Q is the a queue of candidate spans. () can contain new spans of
length one or extension of spans previously accepted and at the current time
located in P.

At the beginning of the inference algorithm P is initialized with the empty
set, and @ is filled with candidate spans [i,] for each token ¢;, and for each label
l € L assigned to t; we set:

M (A1) = {i = 1} (4)

where ¢ — [represent the hypothesis consisting of the action with no context
which assigns label [to w;. This provides the set of starting hypotheses.

The loop of the algorithm repeatedly selects a candidate span s’ from Q, s’
is the span with the highest action score, so we pick the span that represents the
next tagging action we are most confident about.

Now we use s’ to update P and Q. First we update P, adding s’ and removing
the spans included in s’. Then let S be the set of spans removed from P. We
update @) removing each span which takes one of the spans in P as context, and
replace it with a new candidate span taking s’ as new context.

The algorithm terminates when P contains a single span covering the whole
token sequence and) becomes empty.

The loop is guaranteed to terminate since at each iteration a span is expanded
or added in P, and considering that P cannot have overlapping spans we can
conclude that the number of iterations needed is linear with the size of the token
sequence.

2.2 Learning Algorithm

In this section we describe the Guided Learning Algorithm, used to learn the
weight vector w with a Perceptron-like algorithm.

For the training a set of token sequences {T1,T%, - ,T,,} is provided as
input. to each token sequence T, = (t1,t9, - -t,) is paired a gold standard label
sequence of the same length L, = (I1,l2,- - , ;). At the beginning of the learning

algorithm we initialize P and @ as we do in the inference algorithm. Then we
iterate selecting the candidate span s’ for the next labeling action from @ like

in the inference algorithm. If the s’ top hypothesis match on the gold standard,
we update P and @ as in the inference algorithm. Otherwise, we update the
weight vector w by promoting the features of the gold standard, and demoting
the features of the action of the candidate top hypothesis, like in the Perceptron
algorithm. Then we undo the last labeling action by replacing the elements in
@ with a new list of candidates containing all the possible spans based on the
context spans in P, and computing the new scores with the updated weight
vector w.

In our implementation we have used the Averaged Perceptron [4] and Per-
ceptron with margin [6].

3 Experiments

In this section we are going to describe the setting chosen for the final experiment
for the Evalita-09 NER shared task, we also report and discuss the results.

3.1 Setting

In the setting of our best system we set beam width B = 3, as threshold be-
tween speed and accuracy. As external resources we used gazetteers of names of
cities and geographical locations (11000), generic proper names and surnames
plus names of italian politicians and famous persons (49000), organizations and
banks names, italian political parties (14000). Among the set of features used,
we distinguish between context features and lexical features.

Context features are meant to capture the information of the surrounding
words, POS and NER labels, We report the feature templates used in our best
model in Table 1 .

Table 1. Templates for context features: 1) single word features, 2) couple of words
features, 3) left context features, 4) right context features, 5) bidirectional features, 6)
bidirectional features using POS tags.

[wo}, w—2]7 [’LU_1], [wl}v [wQJ
’w717w0], [w07w1]

[n*1]7 [n*27n*1}7 [n*Qvn*th]v [nflvwo]v [n*2]7 [nfszo]
[n1], [n1,n2], [n1,n2,w0], [n1,w0], [n2], [R2,Ww0]
[n—1,m1], [n—1,n1,wo]

[po, p-1], [n—2, n1, p-1], [n—2, ma, p—2, p—1, p1]

O OY | W N~

To select features that use the POS information we applied a semi-automatic
method for feature template selection. These features are reported in Table 1
line 6. Adding these features led to a relative F; improvement of 1.1% on the
development set.

As lexical features for the current word we consider: the presence of special
characters of symbols like digits or ’-’; the prefixes and suffixes up to length
of 9 characters; the capitalization of the first letter or of the whole word, in
relation with the capitalization of context words. We observed that treating the
capitalization of the first word of the sentence separately from the other words of
the sentence resulted in a relative I improvement of 1.2% on the development
set.

Following [5] we applied a voting system between multiple data representation
of text chunks. We generated 5 versions of the corpus, one for each chunks
representation (IOB1, IOB2, IOE1, IOE2, O+C). Then we trained one instance
of our system on each of the five version of the corpus. As a final step we produced
a prediction of the test set from each of the five versions of the system, and we
merged the predictions with a majority vote. Differently from [5] we associated
the votes to chunks instead of the single labels. In the merged prediction we kept
the chunks with at least four votes out of five, using this technique we recorded
a relative F; improvement of 0.8% on the development set.

3.2 Results

The results reported in this section are those obtained on the Evalita 2009 I-CAB
corpus, consisting of news stories taken from an Italian newspaper.

The participating systems are evaluated on the Precision, Recall and F
measures. We submitted 2 outputs, the first for the system with no external
resources, and the second with the use of gazetteers. The results are reported in
Table 2, and Table 3 for the system with gazetteers.

Table 2. Results for the system with no external resources.

Precision| Recall | Fi
GPE | 82.37% |76.03%|79.07
LOC | 68.29% |35.90%47.06
ORG | 78.13% (55.16%64.67
PER | 87.85% [76.96%82.04

Overall| 83.92% (69.79%|76.21

Table 3. Results for the system with the gazetteers.

Precision| Recall | I}
GPE | 83.00% |83.73%83.36
LOC | 68.48% [40.38%)50.81
ORG | 80.41% |63.69%|71.08
PER | 91.03% [84.06%|87.41
Overall| 86.06% |77.33%|81.46

We can notice that the Recall is usually lower than Precision. When gazetteers
were used we observed relative F| improvement of 6.89%, moreover the ratio
Recall/Precision increased from 0.83% up to 0.90%. We observed also that the
identification for the classes GPE and PER reached a good level, while the LOC
had the lower score in both the versions. On a common Desktop (equipped with
a Core2 Duo CPU at 2.66GHz) the 8 rounds of training were completed in 1
hour and a half, and the tagging of the 4136 sentences of the test set took less
then 2 minutes. During the training phase 500k features were generated.

4 Conclusion

In this paper we extended the work on the Guided Learning approach, adapting
it to a new task, and applying new features. We successfully participated at the
Evalita 2009 NER shared task, achieving the second position in the final rank. In
related works, described in [2] [7] and [8], we applied this approach to a variety
of tasks (POS tagging, NER, NP chunking) reaching state of the art results with
moderate execution time. With this work, we have further proved the validity
of Guided Learning.

Acknowledgments. We thank Giorgio Satta and Libin Shen for help and ad-
vice.

References

1. Ramshaw, L., and Marcus, M.: Text chunking using transformation-based learning.
In: Proceedings of the third ACL workshop on very large corpora (1995)

2. Shen, L., Satta, G., Joshi, A., K.: Guided learning for bidirectional sequence classi-
fication. In: Proceedings of the 45th annual meeting of the association of computa-
tional linguistics (2007)

3. Bottou, L.: Une approche théorique de ’apprentissage connexionniste: Applications
& la reconnaissance de la parole. Ph.D thesis, Université de Paris XI (1991)

4. Collins, M.: Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In: Proceedings of EMNLP-2002 (2002)

5. Shen, H., Sarkar, A.: Voting between multiple data representations for text chunk-
ing. In: Proceedings of the eighteenth meeting of the canadian society for computa-
tional intelligence (2005)

6. Krauth, W., and Mézard, M.: Learning algorithms with optimal stability in neural
networks. Journal of Physics A, vol. 20, pp. 745-752 (1987)

7. Gesmundo, A.: Elaborazione del linguaggio naturale basata su features bidirezionali.
Master thesis, Universita di Padova (2007)

8. Gesmundo, A.: Bidirectional sequence classification for Part of speech tagging. In:
Proceedings of EVALITA 2009 (2009)

