Vine parsing augmented Italian treebanks

Anders Sggaard and Christian Rishgj

Center for Language Technology
University of Copenhagen

Abstract. This brief article describes our contribution to the EVALITA
2009 Parsing Task, dependency track. The TUT and ISST treebanks are
augmented with additional features. MIRA is used to find a weight ma-
trix suited for the Covington algorithm, which is subsequently skewed
by discriminatively learned hard constraints on dependency lengths. Our
skewed algorithm is linear time and thus asymptotically faster than the
cubic time Covington algorithm, but increases in performance are in-
significant. Our overall system is thus non-competitive. It is shown, how-
ever, that it does contribute significantly to the performance of a more
competitive ensemble-based system.

Keywords: Dependency Parsing, vine parsing, treebank augmentation.

1 Introduction

In the context of dependency parsing, vine parsing amounts to hard constraints
on dependency length. Hard constraints on dependency length limit the search
space considerably, and vine parsers such as [1-3] are very fast. The three models
cited also significantly improve the performance of the non-vine baseline parser
by adding constraints on dependency length. In all cases, however, the baseline
parsers are non-competitive and informed only by simple maximum likelihood
estimates.

The main objective of this work is to test whether vine parsing easily scales to
state-of-the-art dependency parsing, i.e. whether discriminatively learned con-
straints on dependency length can be used directly to boost such models. In our
experiments we use a (first order) MIRA-informed Covington algorithm [4, 5] as
our baseline parser. Our results are largely negative, but it is important to see
that this could not be predicted in advance:

— Information about dependency length is coarse-grained in the models that
guide state-of-the-art dependency parsers, since lengths are binned to avoid
data sparseness and/or there is a back-off strategy.

— Since most features are also rather local for tractability reasons, this means
that the precision of dependency parsers decrease considerably with depen-
dency length [6].

It is also important to note that our results do not disqualify the use of hard
constraints in dependency parsing with rich models. On the contrary. The model

used in our experiments speeds up parsing considerably, taking us from cubic
time to linear time, with little or no cost in accuracy. Furthermore, there may
be more intelligent ways of importing constraints on dependency length in your
models than the somewhat naive approach taken here.

The overall architecture of the system is as follows: The MIRA procedure is
run on an augmented (see Sect. 2) treebank and outputs a model. The Covington
algorithm [4] is applied to produce a labeled parse. A weight matrix for unlabeled
arc candidates is constructed simultaneously. The labeled parse is stored for later
use, since our discriminative perceptron-style procedure for finding constraints
on dependency length only works for unlabeled dependency parsing. The labeler
subsequently greedily projects these labels onto the unlabeled parses. Using 10
90-10 splits of the training data, a range of POS-specific hard constraints on
dependency length are tested, and those that lead to improvements are stored
in a dictionary for that fold. The 10 fold dictionaries are combined by one out
of several unification strategies (Sect. 3). A vine parsing algorithm is applied
to the test data which makes use of the combined dictionary of POS-specific
hard constraints on dependency length and the original model for the Covington
algorithm. In our experiments we use the Italian treebanks: TUT, which comes
in two sections, a newspaper section TUT(n) and a law text section TUT(]),
JRC and ISST.

The treebank augmentation referred to above is done in a simple conver-
sion script. The implementation of MIRA documented in McDonald et al. [5]
is used with a default 10 iterations (considering 5 best parses). The Covington
algorithm and the procedure for subsequent learning of hard constraints on de-
pendency length were implemented in Java, resp. Python. The labeler was also
implemented in Python. All system components and scripts that pipeline the
overall procedure are available upon request.

Our choice of using the Covington algorithm as our point of departure was
motivated by a quick and dirty experiment running four different parsing al-
gorithms on the first fold in the TUT(1), trained on the remaining 9/10. The
algorithms, apart from the Covington algorithm, are the vine parser in Sggaard
and Kuhn [3] (SK), a spanning tree algorithm with limited cycle contraction (k-
MST), the LR algorithm in Sagae and Tsujii [7] (KSDep), the transition-based
arc-eager algorithm in Nivre et al. [8] (MaltParser), and the spanning tree algo-
rithm described in McDonald et al. [9] (MSTParser). KSDep was trained with
a 100 iterations; 500 iterations led to worse scores (83.53/77.42). The unlabeled
Covington(u) algorithm is trained with dependency relations removed.

|[SK k-MST KSDep MaltParser Covington(l) MSTParser(u) Covington(u)
UAS|70.53 84.18 84.26 84.76 86.03 86.14 86.93
LAS |- - 77.67 79.48 80.71 - -

Considering 5-best parses in training Covington(u) scores 87.69. This param-
eter setting was naively imported to the other treebanks too. Including second
order features boosts performance too, but our vine parsing algorithm is cur-
rently only implemented for first order features.

2 Treebank augmentation

Three treebank augmentation schemes were tested.

The scheme PARENTHESIS4+QUOTED_PHRASE is based on experiments with
the EVALITA 2007 release of the TUT treebank, documented in Rishgj [10].
It simply adds a feature to tokens inside parentheses and quoted phrases. In
10-fold cross-validation on the training data, this leads to an overall significant
improvement on TUT, but in fact it is only our predictions on TUT(1) that
improves. Consequently, we did not apply this scheme to TUT(n). The scheme
made our ISST parses worse. None of the schemes were applied to JRC.

The scheme COMBINETREEBANKS adds the predicted dependency label of
each word from a parser trained on the other treebank to its features. So, for
example, we train a parser on TUT and run it on (the complete) ISST and add
the predicted dependency label to each word’s feature list. The scheme is in a
way comparable to parser stacking, e.g. [11], except that we stack two distinct
treebanks. This leads to a small, but significant improvement, but the number
of features extracted in training when this scheme is used is about three times as
big as in our baseline system. This schema was only used for the TUT treebanks.

The third and final scheme LEMMA is not really an augmentation. It sim-
ply copies lemma information to the word field in the treebank and removes
information in the lemma field. This was used in all treebanks, except JRC.
The intuition is that lemma and morphological features are enough to recon-
struct what is important, and that skipping word forms removes undesirable
noise from our training data.

3 Constraints on dependency length

Our overall architecture gives us 10 dictionaries of POS-specific hard constraints
on dependency length for each treebank. How do we combine these dictionar-
ies? In our submitted results, we somewhat naively used the strategy T=1 (see
below), but in this paper we present experiments with three different strategies.
T is intuitively a threshold for how many folds a constraint must occur in to
be included in the final dictionary. For each POS maj(POS) is the class of left,
resp. right, constraints if arcs from items labeled POS are more frequently con-
strained to the left, resp. right. maj(POS,1) is then the set of upper bounds on
arcs to the left, resp. right, in the various folds, while maj(POS,2) is the set of
upper bounds on arcs to the right, resp. left. A constraint is written { POS, 4,
j) with 4, j upper bounds on length; it says that any arc from an item labeled
POS can span at most ¢ items if to the left and j items if to the right.
T=1 For each POS include the constraint max(maj(POS,1)) and max(maj(POS,2)).
T=5 For each POS include the constraint max(maj(POS,1)) and max(maj(POS,2))
if and only if j[maj(POS)| > 5.
G+T=5 For each POS include the constraint min(maj(POS,1)) and max(maj(POS,2))
if and only if l[maj(POS)| > 5.

A superior strategy would be to test all constraints in the dictionary by
10-fold cross-validation. Such experiments have not been carried out yet.

4 Results

This section presents the submitted results and the results obtained with the
two other unification strategies. Note that the two other strategies lead to much
better results. EM is the number of exact matches. "All’ is the average score for
TUT and JRC.

T=1 LAS UAS EM T=5 LAS UAS EM G+T=5| LAS UAS EM
TUT(n)|72.84 81.93 10.00 TUT(n)| 72.90 82.21 9.00 TUT(n) |73.57 83.28 8.00
TUT(1) |86.04 90.27 24.00 TUT(l) |87.48 91.93 25.00 TUT(l) | 86.18 90.54 11.00
JRC 81.85 86.30 2.50 JRC 84.16 89.19 10.00 JRC 84.16 89.19 10.00
All 80.42 - - All 81.73 - - All - - -
ISST |78.51 85.81 12.31 ISST |79.25 86.61 12.69 ISST 79.19 86.51 12.69

5 Other languages?

To test the applicability of POS-specific hard constraints on dependency length
in the context of MIRA-informed projective dependency parsing, we present
results on other languages too, incl. data sets from the CONLL-X Shared Task
and EVALITA 2007.

Note that results on data sets from the CONLL-X Shared Task are excl. punc-
tuation for comparability with shared task results. The official results reported
using the MSTParser [9], the best scoring system in the contest, are listed for
comparison (MST). The MSTParser used second order features to obtain the
repored results, but note that our baseline system (BL) is slightly better than
the reported results in the case of Turkish.

LAS | BL T=1 T=5G+T=5 A|MST
Arabic |78.26 77.41 77.98 77.88]-0.28(79.34
Danish |89.48 89.00 89.32 88.96|-0.16/90.58
Slovene | 81.83 81.14 81.85 80.72| 0.02(83.17
Swedish|88.17 87.87 88.15 87.93|-0.02|88.93
Turkish | 74.83 74.11 74.89 74.75| 0.06|74.67

Our vine parsing algorithm is only better than our baseline Covington algo-
rithm in 2/5 cases, and never significantly so (p < 0.05). The relevant p-value is
0.46 for Slovene, 0.10 for Turkish. The results confirms that T=5 is generally the
best strategy of the three strategies proposed here. Our results are only better
than the official CONLL-X Shared Task results also reported in [9] in the case
of Turkish.

Finally, we add results on the EVALITA 2007 data sets for comparability
with last year’s results, incl. punctuation. AttSimi lists the results submitted by
[12], ranked as the best performing statistical parser in the shared task:

LAS | BL T=1 T=5G+T=5| A|AttSim
TUT(1) [91.87 91.79 91.87 91.87‘0.00‘ 91.37

TUT(n)| 85.49 84.39 85.49 85.49(0.00| 85.49

Any increase over a clean run of a MIRA-informed Covington algorithm is
due to the treebank augmentation schemes.

Ensemble-based dependency parsing

To turn our non-competitive parser into a more competitive one we build an
ensemble of our parser and some of the parsers tested in our first preliminary
experiments, incl. KSDep, MaltParser (w. CONLL’07 settings for Italian), MST-
Parser (2nd order) and the MLE-informed non-projective vine parser in [3] (SK).
Our procedure was simple: Attachment and labeling were treated as indepen-
dent procedures. A 15 nearest neighbor classifier trained on the predictions of
our input classifiers (10-fold CV) was used to weight each candidate arc. The
final weight of an arc is the product of the classifier weight and the vote + 0.5.
This means that our ensemble can learn to produce arcs that are not labeled.
The same procedure was used for dependencies, except using Naive Bayes with
100-estimates. The algorithm was run twice on TUT(1) with the predictions from
first round as input features for the second run. Our ensemble produced 20 la-
bel predictions in total not predicted by any input classifier, of which 10 were
correct. Ours(-) is the ensemble performance with our vine parser’s predictions
removed.

LAS UAS LA
SK - 81.29 -

KSDep | 66.68 76.89 75.45
MST |76.45 80.03 86.39
Malt 90.49 93.50 93.59
Ours [90.41 93.50 94.46
Ours(-)| 88.62 92.89 93.41

Our results point to a disadvantage of using LAS as evaluation measure in
dependency parsing. The set of correct arcs wrt. LAS is the intersection of the
correct arcs wrt. UAS and the correct arcs wrt. LA. Consequently, LAS says
nothing about correctness in terms of UAS and LA. Our UAS and LA scores
are better than those of the optimized MaltParser in the above, but our LAS
is considerably worse.! The main point, however, is not the improvement over
MaltParser, but the contribution of our vine parser to this ensemble.

Acknowledgement

Thanks to Martin Haulrich for technical assistance with MIRA learning software
and to Jonas Kuhn for letting us use part of his code in our scripts and in our
implementation of k-MST.

YA similar result was obtained in an ensemble experiment on TUT(n)
using only our predictions and those of the MaltParser. Malt-
Parser scored LAS=76.94/UAS=85.80/LA=81.82, while our ensem-
ble scored LAS=76.77/UAS=85.80/LA=84.18 in second round and
LAS=76.94/UAS=85.80/LA=84.74 in sixth round (where it stabilizes). By
alternating classifiers we obtained LAS=77.05/UAS=85.80/LA=84.29.

References

10.

11.

12.

. Eisner, J., Smith, N.A.: Parsing with soft and hard constraints on dependency

length. In: Proceedings of IWPT. Vancouver, Canada (2005)

Dreyer, M., Smith, D.A., Smith, N.A.: Vine parsing and minimum risk reranking
for speed and precision. In: Proceedings of CONLL. New York, NY (2006)
Segaard, A., Kuhn, J.: Using a maximum entropy-based tagger to improve a very
fast vine parser. In: Proceedings of IWPT (2009)

Covington, M.: A fundamental algorithm for dependency parsing. In: Proceedings
of ACM Southeast (2001)

McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of ACL (2005)

Nivre, J., McDonald, R.: Integrating graph-based and transition-based dependency
parsers. In: Proceedings of ACL-HLT (2008)

Sagae, K., Tsujii, J.: Dependency parsing and domain adaptation with Ir models
and parser ensembles. In: Proceedings of EMNLP-CONLL (2007)

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kiibler, S., Marinov, S.,
Marsi, E.: MaltParser: a language-independent system for data-driven dependency
parsing. Natural Language Engineering, vol. 13, issue 2, pp. 95-135 (2007)
McDonald, R., Lerman, K., Pereira, F.: Multilingual dependency analysis with a
twostage discriminative parser. In: Proceedings of CONLL (2006)

Rishgj, C.: Feature engineering in data-driven dependency parsing. Master’s thesis,
University of Copenhagen (2009)

Martins, A., Das, D., Smith, N., Xing, E.: Stacking dependency parsers. In:
Proceedings of EMNLP (2008)

Attardi, G., Simi, M.: DESR at the EVALITA dependency parsing task. In:
Proceedings of EVALITA 2007 (2007)

