
Recognizing Textual Entailment for Italian
EDITS @ EVALITA 2009

Elena Cabrio1,2, Yashar Mehdad1,2, Matteo Negri1, Milen Kouylekov1, and
Bernardo Magnini1

1 Fondazione Bruno Kessler (FBK-irst)
2 University of Trento

{cabrio,mehdad,negri,kouylekov,magnini}@fbk.eu

Abstract. This paper overviews FBK’s participation in the Textual En-
tailment task at EVALITA 2009. Our runs were obtained through differ-
ent configurations of EDITS (Edit Distance Textual Entailment Suite),
the first freely available open source tool for Recognizing Textual En-
tailment (RTE). With a 71% Accuracy, EDITS reported the best score
out of the 8 submitted runs. We describe the sources of knowledge that
have been used (e.g. extraction of rules from Wikipedia), the different
algorithms applied (i.e. Token Edit Distance, Tree Edit Distance), and
the Particle Swarm Optimization (PSO) module used to estimate the
optimal cost of edit operations in the cost scheme. Two different depen-
dency parsers for the annotation of the data in the preprocessing phase
have been compared, to assess the impact of the parser on EDITS per-
formances. Finally, the obtained results and error analysis are discussed.

Key words: Textual Entailment, Tree Edit Distance, Open Source Sys-
tem.

1 Introduction

For the first time, the Recognizing Textual Entailment challenge is organized for
Italian, as a task of the second evaluation campaign of Natural Language Process-
ing tools for Italian. Taking advantage of past participations to the Pascal RTE
Challenge, FBK’s submitted runs to EVALITA have been obtained using EDITS
(Edit Distance Textual Entailment Suite) [7], an open-source software package
for recognizing Textual Entailment developed at FBK. The package, which is
freely downloadable at http://edits.fbk.eu/ 1, provides a basic framework for a
distance-based approach to the task, with a highly configurable and customiz-
able environment to experiment with different algorithms. Taking advantage of
its potential in terms of extensions and integrations with new algorithms and
resources, EDITS was used to run our experiments over the provided datasets.

The paper is structured as follows: Section 2 describes the main features of
the EDITS package, its core components, and the workflow. Section 3 presents
1 The first release of the package, EDITS 1.0, is available under GNU Lesser General

Public Licence - LGPL.

the resources we have used as a knowledge source for our EVALITA submissions,
while Section 4 describe the settings we have experimented. Section 5 concludes
the paper reporting the results we obtained, together with some error analysis.

2 EDITS

The system we have used to take part in the RTE Challenge is the EDITS
package (Edit Distance Textual Entailment Suite) [7], developed by the HLT
group at FBK. EDITS implements a distance-based approach for recognizing
textual entailment, which assumes that the distance between T and H is a
characteristic that separates the positive T -H pairs, for which the entailment
relation holds, from the negative pairs, for which the entailment relation does not
hold (it is developed according to the two way task). More specifically, EDITS
is based on edit distance algorithms, and computes the T -H distance as the
overall cost of the edit operations (i.e. insertion, deletion and substitution) that
are necessary to transform T into H.

The edit distance approach used in EDITS builds on three basic components
(shown in Figure 1):

– An Edit distance algorithm, which calculates the set of edit operations
that transform T into H. EDITS provides distance algorithms at three lev-
els: i) String Edit Distance, where the three edit operations are defined over
sequences of characters, ii) Token Edit Distance, where edit operations are
defined over sequences of tokens of T and H, and iii) Tree Edit Distance,
where edit operations are defined over single nodes of a syntactic represen-
tation of T and H. EDITS provides an implementation of the Levenshtein
distance algorithm [4] for String Edit Distance, a token-based version of the
same algorithm for Token Edit Distance, and the Zhang-Shasha algorithm
[9] for Tree Edit Distance.

– A Cost scheme, which defines the cost associated to each edit operation
involving an element of T and an element of H.

– Optional sets of rules, both entailment rules and contradiction rules, pro-
viding specific knowledge (e.g. lexical, syntactic, semantic) about the allowed
transformations between portions of T and H. Each rule has a left hand side
(an element of T) and a right hand side (an element of H), associated to
a probability which indicates if the left hand side entails or contradicts the
right hand side. Rules can be manually defined, or they can be extracted
from any external resource available (e.g. WordNet, corpora, Wikipedia).

Each module, and its corresponding parameters, can be configured by the
user through the XML EDITS Configuration File (ECF), which includes the
distance algorithm, the cost scheme, and possible rule repositories. This way
EDITS provides a general framework which allows to combine the existing algo-
rithms/cost schemes, or replace them with new ones implemented by the user.

EDITS can work at different levels of complexity, depending on the linguistic
analysis carried out over T and H. An internal representation format, called

Fig. 1. EDITS workflow.

ETAF (EDITS Text Annotation Format) is defined such that both linguistic
processors and semantic resources can be easily used, resulting in a flexible,
modular and extensible approach to TE. The format is used both for representing
the input (T -H pairs), as well as for representing entailment and contradiction
rules. ETAF allows to represent texts at three different levels: i) as simple strings;
ii) as sequences of tokens with their associated morpho-syntactic properties; iii)
as syntactic trees with structural relations among nodes.

Given a certain configuration of its three basic components, EDITS can be
trained over a specific RTE dataset in order to optimize its performance. As
shown in Figure 1, in the training phase EDITS produces a distance model for
the dataset, which consists in a distance threshold S (with 0 < S < K) that best
separates the positive and negative examples in the training data. During the test
phase EDITS applies the threshold S, so that pairs resulting in a distance below
S are classified as “YES”, while pairs above S are classified as “NO”. Given the
edit distance ED(T, H) for a T -H pair, a normalized entailment score is finally
calculated by EDITS using the following formula:

entailment(T, H) =
ED(T, H)

(ED(T,) + ED(, H))
(1)

where ED(T, H) is the function that calculates the edit distance between T and
H, and (ED(T,) + ED(, H)) is the distance equivalent to the cost of inserting
the entire text of H and deleting the entire text of T. The entailment score has
a range from 0 (when T is identical to H), to 1 (when T is completely different
from H).

Once a distance model is available, EDITS can be run over a RTE test set.
Besides the entailment judgment (i.e. “YES”/“NO”), for each pair the system
provides the entailment score calculated by the algorithm, and the confidence

score of the entailment assignment (i.e. the distance between the entailment
score and the threshold S calculated at a training stage).

In order to estimate the optimal cost of each edit operation in the cost scheme,
as well as being able to weight the costs such as substituting the terms involved in
the entailment rules, a stochastic method based on Particle Swarm Optimization
(PSO) [5] was implemented as another module in EDITS. Configuring the PSO
module, we try to learn the optimal cost for each edit operation in order to
improve the prior textual entailment model. The main goal of using this module
is to automatically estimate the best possible operation costs on the development
set. Beside that, such method allows to investigate the cost values to better
understand how different algorithms approach the data in textual entailment.
Moreover, taking advantage of automatic estimation of costs, using PSO would
allow the user to find the optimal weight of different resources, and measure
their respective contribution on specific datasets.

3 Resources used for EVALITA submissions

An important aspect in dealing with the Textual Entailment task is represented
by the amount of knowledge required to correctly handle the input T-H pairs.
To address this issue, a list of stopwords, and Wikipedia have been used as the
main sources of knowledge used for our EVALITA submissions.

A list of the 149 most frequent Italian words has been collected, and they
are used to: i) prevent assigning high costs to the deletion/insertion of terms
that are unlikely to bring relevant information to detect entailment, and ii) to
avoid substituting these terms with any content word. Stop words are handled
at a cost scheme level (i.e. by assigning the minimal edit operation cost, 0, as a
fixed cost for their insertion/deletion).

Furthermore, 133496 lexical entailment rules have been extracted from the
Italian Wikipedia as additional source of knowledge. Rule extraction from Wiki-
pedia is motivated by the high coverage of this resource, specifically in dealing
with named entities. Although it represents a potentially noisy knowledge re-
source, experimental results demonstrated the substantial reliability of the (even
suboptimal) rules we collected. Rule extraction has been carried out using the
jLSI (java Latent Semantic Indexing) tool [2], as reported in [6].

Applying the extracted entailment rules from Wikipedia, we gained a higher
coverage as well as a better performance in our entailment framework. It’s worth
mentioning that all the entailment rules are represented in the ETAF XML
format adopted by EDITS, and are publicly available from the EDITS website.

4 Submissions

This section details the settings of our four submitted runs.
Run 1. We applied the Token Edit Distance algorithm to estimate the dis-

tance between T and H. As a preprocessing phase, we used the TextPro tagger

[8] to tag each word as token, lemma, pos, WordNet pos (WNPOS) and full
morphological analysis. In the cost scheme, the cost of deletion, insertion and
substitution of stop-words were set to 0 and we did not allow substitution of
stop-words with content words. No additional rules are applied.

Run 2. The Token Edit Distance algorithm has been applied, with the same
cost scheme used for run 1. We assigned a weight to the cost of substituting two
terms while they match an entailment rule. These weights were automatically
estimated using the PSO algorithm [5] for the set of entailment rules extracted
from Wikipedia considering the EVALITA datasets. Also the weight of the words
that are not present in the entailment rules were optimized automatically using
PSO.

Run 3. The Tree Edit Distance algorithm has been applied on the depen-
dency trees of T and H. As a preprocessing phase, we parsed the data with the
Italian version of the MaltParser [3]. As in the previous settings, the cost of dele-
tion, insertion and substitution of stop-words were set to 0. Lexical entailment
rules extracted from Wikipedia have been integrated in the configuration, using
the same criteria described above.

Run 4. Same setting as run 3, but data has been parsed with the XIP (Xerox
Incremental Parser), using the grammar developed for Italian [1].

5 Results and discussion

The results we obtained are illustrated in Table 1. The best run was performed
using: i) token edit distance to estimate the distance between T and H, ii) the
rules extracted from Wikipedia, and iii) estimating the cost of operations using
the PSO [5] module in our settings.

Generally stating, the rules we extracted from Wikipedia were efficient in
improving our performance in all runs. Moreover, the automatic estimation of
optimized costs played an important role in enhancing and stabilizing the accu-
racy over the datasets, specifically, while the costs were assigned dynamically.

Table 1. Submissions results (accuracy on training and test data)

Run1 Run2 Run3 Run4

Dev. 0.72 0.725 0.645 0.647
Test 0.71 0.71 0.51 0.50

In order to assess the impact of the parser on EDITS performances, we
compared two different dependency parsers: for the third run we used the Italian
version of the MaltParser [3] as the dependency parser, while for the forth run we
have used XIP (Xerox Incremental Parser) [1]. As can be seen from the results
in Table 1 (run 3 and 4), the system performances on the EVALITA datasets do
not vary a lot depending on the parser.

In general, the tree edit distance approach had a sharp drop (about 13 %) in
the accuracy over the test set. More specifically, the recall of pairs to be judged
as NO ENTAILMENT is really low (in run 3, only 37 non entailing pairs were
detected out of 200, and in run 4 only 20). This is due to the fact that EDITS
learns the threshold to separate the positive from the negative pairs from the
training dataset, and then applies it during the test phase. Most of the pairs
contained in the EVALITA datasets are composed by very similar Ts and Hs,
that differ between them only of one of a couple of words. Analysing the datasets,
we noticed that in the training set there are about one hundred pairs that are
more various, that contribute to increase the system threshold. In the test set,
almost all pairs are really close, so the threshold is overestimated, and all the
sums of the distances calculated for each T-H pairs are lower than the threshold,
meaning a positive judgement.

As a general remark, it is worth observing that the best results of our sub-
missions have been obtained applying the Token Edit Distance algorithm, while
the use of Tree Edit Distance on this dataset seems to increase the probability of
mistakes. The unexpected limited (even detrimental, in our case) contribution
of syntactic analysis to our results can be partially explained by the fact that
test pairs feature a high word overlap, and share similar syntactic structures,
thus reducing the room for syntax-based algorithms. This could be a negative
effect of the methodology adopted for dataset creation, which was based on pairs
taken from the Italian Wikipedia, manually modified (e.g. modifying the tense
of a verb, as in T: “...era membro...”, H: “...é membro...”) to create contrast-
ing texts. More natural dataset creation methodology would probably increase
the distance between results achieved by linear and syntax-based approaches
rewarding the second ones.

Acknowledgments. We would like to thank CELI - Language & Information
Technology, for parsing the datasets with Xip.

References

1. Bolioli, A., Dini, L., Mazzini, G., Testa: CELI’s participation to the Evalita depen-
dency grammar evaluation task. To appear in: Proceedings of the EVALITA 2009.
Reggio Emilia, Italy (2009)

2. Giuliano, C.: jLSI a tool for latent semantic indexing. Software available at:
http://tcc.itc.it/research/textec/tools-resources/jlsi.html (2007)

3. Lavelli, A., Hall, J., Nilsson, J., Nivre, J.: The Malt Parser at the EVALITA 2009
Dependency Parsing Task. To appear in: Proceedings of the EVALITA 2009.Reggio
Emilia, Italy (2009)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and re-
versals. Doklady Akademii Nauk SSSR, vol. 163, issue 4(1965)

5. Mehdad, Y.: Automatic Cost Estimation for Tree Edit Distance Using Particle
Swarm Optimization. In: Proceedings of the ACL-IJCNLP 2009 Conference (2009)

6. Mehdad, Y., Negri, M., Cabrio, E., Kouylekov, M., Magnini, B.: EDITS: an Open
Source Framework for Recognizing Textual Entailment. To appear in: Proceedings
of TAC 2009 (2009)

7. Negri, M., Kouylekov, M., Magnini, B., Mehdad Y., Cabrio, E.: Towards Extensible
Textual Entailment Engines: the EDITS Package. To appear in: Proceedings of
AI*IA 2009 - XIth International Conference of the Italian Association for Artificial
Intelligence (2009)

8. Pianta, E., Girardi, C., Zanoli, R.: The TextPro tool suite. In: Proceedings of LREC,
6th edition of the Language Resources and Evaluation Conference (2008)

9. Zhang, K., Shasha D.: Fast Algorithm for the Unit Cost Editing Distance Between
Trees. Journal of algorithms, vol. 11 (1990)

