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Abstract. Our participation to the SuperSense tagging task relies on a flexible 
and customizable tagging tool, developed as part of the Tanl suite, for use in 
various tagging tasks, including PoS tagging and Named Entity tagging. The 
tagger is based on a Maximum Entropy classifier and uses dynamic 
programming to select accurate sequences of tags. It extracts three different 
kinds of features: attributes features, related to the position of the attributes 
surrounding the current token; local features that are morphological features 
extracted from the analysis of the current word and the context in which it 
appears; global features that are properties holding at the document level. 
Features were explicitly customized for the SuperSense task. 

Keywords: SuperSense Tagging, Word Net, Maximum Entropy, dynamic 
programming 

1 Description of the System 

SuperSense tagging (SST) consists in annotating nouns, verbs, adjectives and adverbs 
in a text, within a general semantic taxonomy defined by the WordNet lexicographer 
classes (called SuperSenses) [1].  

SST can be regarded as a special case of chunking, hence we implemented a 
SuperSense tagger by extending and customizing a generic chunker, which we 
developed as part of Tanl pipeline [2] and which is based on the work of Chieu & Ng 
[3]. This generic chunker was also used for implementing the Tanl NER, that achieves 
state of the art accuracy on the CoNLL 2003 benchmarks for English. 

In [4] we reported preliminary results in SST (F1 score of 79.1), which represented 
a significant improvement on state-of-the art performance for Italian in this task. The 
task was simpler, with respect to Evalita 2011, in several respects; in particular, the 
annotation of complex noun phrases such as “Presidente della Repubblica” was not 
contemplated. 

The tagger uses a Maximum Entropy classifier for learning how to chunk texts and 
dynamic programming in order to select sequences of tags with the highest 
probability. The tagger design is flexible and allows choosing which features are 



relevant for a specific tagging task, and from which tokens or tokens attributes they 
should be extracted. 

Maximum Entropy is effective for chunking, since it does not assume 
independence of features. It is also a more efficient technique than SVM and, 
complemented with dynamic programming, can achieve similar levels of accuracy. 

1.1 Maximum Entropy and Dynamic Programming 

The Maximum Entropy framework estimates probabilities based on the principle of 
making as few assumptions as possible, other than the constraints imposed. Such 
constraints are derived from training data, expressing some relationship between 
features and outcome. The probability distribution that satisfies the above property is 
the one with the highest entropy, it is unique, and agrees with the maximum-
likelihood distribution. The distribution has the following exponential form [5]: 
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where o refers to the outcome, h is the history or context, and Z(h) is a normalization 
function. The features used in the Maximum Entropy framework are binary. An 
example of a feature function is: 
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The parameters αj are estimated by a procedure called Generalized Interactive Scaling 
(GIS) [6]. This is an iterative procedure that improves the estimation of parameters at 
each iteration. 

Since the Maximum Entropy classifier assigns tags to each token independently, it 
may produce inadmissible sequences of tags. Hence a dynamic programming 
technique is applied to select correct sequences. A probability is assigned to a 
sequence of tags t1, t2,…, tn for sentence s, based on the probability of the transition 
between two consecutive tags P(ti+1 | ti), and the probability of a tag P(ti | s), obtained 
from the probability distribution computed by Maximum Entropy: 
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In principle the algorithm should compute the sequence with maximum probability. 
We use instead a dynamic programming solution which operates on a window of size 
w = 5, long enough for most SuperSenses. For each position n, we compute the best 
probability PB(tn) considering the n-grams of length k < w preceding tn: 

PB(tn) = maxk PB(tn-k-1) ... PB(tn-1) 

A baseline is computed, assuming that the k-gram is made all of ‘O’ (outside) tags: 

PBO(tn) = maxk PB(tn-k-1) P(tn-k = O) ... P(tn-1 = O) 



Similarly for each class C we compute: 

PBC(tn) = maxk PB(tn-k-1) P(tn-k = C) ... P(tn-1 = C) 

and finally: 

PB(tn) = max(PBO(tn), maxC PBC(tn) 

1.2 Features Specification 

The modular architecture of the chunker offers the possibility to specify the features 
to extract using a textual configuration file. In particular three different kind of 
features can be specified: 

• attributes features: represent certain attributes (e.g.: PoS, Lemma, NE) of 
surrounding tokens, expressed by the relative positions w.r.t. to the current token; 
for example POSTAG -1 0 means: use as context features for the current token the 
PoS of the previous token and of the current token, in position 0; 

• local features: other binary morphological features extracted from the analysis of 
the current word and the context in which it appears; for example “previous word 
is capitalized”; 

• global features: properties holding at the document level. For instance, if a word 
in a document was previously annotated with a certain tag, then it is likely that 
other occurrences of the same word should be tagged similarly. Global features 
represent these properties. They are particularly useful in cases where the word 
context is ambiguous but the word appeared previously in a simpler context. 

1.3 Dataset and Testing Phase 

The training set was in a tab-separated columns format with one token per line and 
four columns corresponding to FORM, LEMMA, PoS and SuperSense in the IOB2 
notation. 

Before the beginning of the tests, we prepared the dataset for a proper validation 
process. The sentences available in the training set were shuffled and divided into 
three separate sets: 

• A training set (about the 70% of the corpus) used to train the models; 
• A validation set (about 20% of the corpus) used to choose the best model; 
• A test set (about 10% of the corpus) used to evaluate the performance.  

To compute the baseline result we used a basic configuration with no attributes 
features and with the following standard set of local features: 

• Features of Current Word: first word of sentence and capitalized; first word of 
sentence and not capitalized; two parts joined by a hyphen. 

• Features from Surrounding Words: both previous, current and following words are 
capitalized; both current and following words are capitalized; both current and 
previous words are capitalized; word is in a sequence within quotes. 



With 100 iterations of the Maximum Entropy algorithm we obtained an F-score of 
71.07 on the validation set. 

The testing process consisted in a process of feature selection involving the 
creation of many configuration files with different combination of features. In 
particular about 300 positional permutations of the attribute features were tested along 
with the variation of other parameters like the number of iterations, the cutoff feature 
(an option that prevents the tagger to learn from features that appear a number of 
times below a given threshold), and refine feature (an option to split the IOB tags into 
a more refined set). 

The performance of each system was computed testing the model on the validation 
set and comparing the accuracy with that of the other systems. Then the same 
configuration file was used to train a new model on a dataset resulting from the 
merging of the training set and the validation set, and the performance was tested on 
the test set. This validation process was done to make sure that the performance does 
not degrade on new and unknown data because of overfitting on the validation set. 

The best run on the validation set obtained a F-score of 80.01, about 10 points 
higher than the baseline. 

1.4 Submission 

For the final submission we have chosen the four runs with the best and most 
balanced performance on the validation and test set. We decided to participate only to 
the closed task because we didn’t obtain any performance improvement from the use 
of external dictionaries and gazetteers, such as ItalWordNet (IWN) [7]. 

In the following sections we will describe the features used to create the four runs, 
called run [1-4]. 

Attributes Features. The table below shows the positional parameters of the 
attributes features used for the four runs. 

Table 1. Attributes features for the four runs 

 Run 1-2 Run 3-4 

FORM 
POSTAG 
CPOSTAG 
LEMMA 

0 
-2 0 1 2 
-1 0 
-1 0 

0 
0 1 
-1 0 
0 

 

For example LEMMA -1 0 tells the tagger to use as features the LEMMA of the 
previous (-1) and of the current (0) token. The CPOSTAG is the coarse-grained POS 
tag that corresponds to the first letter of the POSTAG. 

Local Features. The standard set of local features described above for the baseline 
was used for all the runs. An additional set of local feature was used for run 3 and run 



4 with the aim to improve the performance of the tagger on the classes of SuperSenses 
with low F-score. Such classes are: verb.emotion, verb.possession, verb.contact and 
verb.creation. A list of the most common non-ambiguous verbs in those classes was 
obtained from the training set and they were added as local features for the current 
LEMMA. The list of verbs is the following: 

• verb.emotion: sperare, interessare, preoccupare, piacere, mancare, temere, amare; 
• verb.possession: vendere, perdere, offrire, pagare, ricevere, raccogliere; 
• verb.contact: porre, mettere, cercare, colpire, portare, cercare, toccare; 
• verb.creation: realizzare, creare, produrre, aprire, compiere. 

Global Features. The refine option which performed well for tasks with a lower 
number of classes like Named Entity Recognition, proved to be less relevant for SST 
where the number of classes and the level of ambiguity is already high, so we didn’t 
use it for the runs. Also changing the threshold value of the cutoff option to values > 1 
showed no improvements on the performance of the system, so we left it to 0. 

Different numbers of training iterations were used for the four runs, in particular: 

• run 1: 100; 
• run 2: 150; 
• run 3: 200; 
• run 4: 500. 

2 Results 

Table 2. UniPI systems results on the closed subtask 

 Accuracy Precision Recall FB1 

UniPI - run 3 88.50% 76.82% 79.76% 78.27 
UniPI - run 2 88.34% 76.69% 79.38% 78.01 
UniPI - run 1 88.30% 76.64% 79.33% 77.96 
UniPI - run 4 88.27% 76.48% 79.29% 77.86 

 
Run 3 was the best performing system for the Evalita 2011 SST closed task. 
 

3 Discussion 

Analysing the data of all the experiments performed while tuning the system, we 
observed that our Maximum Entropy tagger achieves the best F1 results with a 
reduced number of iterations, i.e. between 100 and 200 iterations (Fig. 1). This is 
really important information for future tunings of the tagger: to be able to fix one 
important parameter decreases the number of experiments to be performed, and has 
also a positive effect on the execution time for training the system. 



It is worth nothing that
set were obtained with run 3,
with 500 iterations, obtained the worst score.

Fig. 1. Maximum Entropy performance vs. number of 
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