
SuperSense Tagging with a Maximum Entropy Classifier
and Dynamic Programming

Giuseppe Attardi, Luca Baronti, Stefano Dei Rossi, Maria Simi

Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3,
56127 Pisa, Italy

{attardi, barontil, deirossi, simi}@di.unipi.it

Abstract. Our participation to the SuperSense tagging task relies on a flexible
and customizable tagging tool, developed as part of the Tanl suite, for use in
various tagging tasks, including PoS tagging and Named Entity tagging. The
tagger is based on a Maximum Entropy classifier and uses dynamic
programming to select accurate sequences of tags. It extracts three different
kinds of features: attributes features, related to the position of the attributes
surrounding the current token; local features that are morphological features
extracted from the analysis of the current word and the context in which it
appears; global features that are properties holding at the document level.
Features were explicitly customized for the SuperSense task.

Keywords: SuperSense Tagging, Word Net, Maximum Entropy, dynamic
programming

1 Description of the System

SuperSense tagging (SST) consists in annotating nouns, verbs, adjectives and adverbs
in a text, within a general semantic taxonomy defined by the WordNet lexicographer
classes (called SuperSenses) [1].

SST can be regarded as a special case of chunking, hence we implemented a
SuperSense tagger by extending and customizing a generic chunker, which we
developed as part of Tanl pipeline [2] and which is based on the work of Chieu & Ng
[3]. This generic chunker was also used for implementing the Tanl NER, that achieves
state of the art accuracy on the CoNLL 2003 benchmarks for English.

In [4] we reported preliminary results in SST (F1 score of 79.1), which represented
a significant improvement on state-of-the art performance for Italian in this task. The
task was simpler, with respect to Evalita 2011, in several respects; in particular, the
annotation of complex noun phrases such as “Presidente della Repubblica” was not
contemplated.

The tagger uses a Maximum Entropy classifier for learning how to chunk texts and
dynamic programming in order to select sequences of tags with the highest
probability. The tagger design is flexible and allows choosing which features are

relevant for a specific tagging task, and from which tokens or tokens attributes they
should be extracted.

Maximum Entropy is effective for chunking, since it does not assume
independence of features. It is also a more efficient technique than SVM and,
complemented with dynamic programming, can achieve similar levels of accuracy.

1.1 Maximum Entropy and Dynamic Programming

The Maximum Entropy framework estimates probabilities based on the principle of
making as few assumptions as possible, other than the constraints imposed. Such
constraints are derived from training data, expressing some relationship between
features and outcome. The probability distribution that satisfies the above property is
the one with the highest entropy, it is unique, and agrees with the maximum-
likelihood distribution. The distribution has the following exponential form [5]:

∏
=

=
k

j

ohf
j

j

hZ
hop

1

),(

)(

1
)|(α ,

where o refers to the outcome, h is the history or context, and Z(h) is a normalization
function. The features used in the Maximum Entropy framework are binary. An
example of a feature function is:



 =−=

=
 otherwise0

FORM ,. if1
),(

WashingtonlocationnounBo
ohf j

The parameters αj are estimated by a procedure called Generalized Interactive Scaling
(GIS) [6]. This is an iterative procedure that improves the estimation of parameters at
each iteration.

Since the Maximum Entropy classifier assigns tags to each token independently, it
may produce inadmissible sequences of tags. Hence a dynamic programming
technique is applied to select correct sequences. A probability is assigned to a
sequence of tags t1, t2,…, tn for sentence s, based on the probability of the transition
between two consecutive tags P(ti+1 | ti), and the probability of a tag P(ti | s), obtained
from the probability distribution computed by Maximum Entropy:

∏
=

−=
n

i
iiin ttPstPtttP

1
121)|()|(),...,,(

In principle the algorithm should compute the sequence with maximum probability.
We use instead a dynamic programming solution which operates on a window of size
w = 5, long enough for most SuperSenses. For each position n, we compute the best
probability PB(tn) considering the n-grams of length k < w preceding tn:

PB(tn) = maxk PB(tn-k-1) ... PB(tn-1)

A baseline is computed, assuming that the k-gram is made all of ‘O’ (outside) tags:

PBO(tn) = maxk PB(tn-k-1) P(tn-k = O) ... P(tn-1 = O)

Similarly for each class C we compute:

PBC(tn) = maxk PB(tn-k-1) P(tn-k = C) ... P(tn-1 = C)

and finally:

PB(tn) = max(PBO(tn), maxC PBC(tn)

1.2 Features Specification

The modular architecture of the chunker offers the possibility to specify the features
to extract using a textual configuration file. In particular three different kind of
features can be specified:

• attributes features: represent certain attributes (e.g.: PoS, Lemma, NE) of
surrounding tokens, expressed by the relative positions w.r.t. to the current token;
for example POSTAG -1 0 means: use as context features for the current token the
PoS of the previous token and of the current token, in position 0;

• local features: other binary morphological features extracted from the analysis of
the current word and the context in which it appears; for example “previous word
is capitalized”;

• global features: properties holding at the document level. For instance, if a word
in a document was previously annotated with a certain tag, then it is likely that
other occurrences of the same word should be tagged similarly. Global features
represent these properties. They are particularly useful in cases where the word
context is ambiguous but the word appeared previously in a simpler context.

1.3 Dataset and Testing Phase

The training set was in a tab-separated columns format with one token per line and
four columns corresponding to FORM, LEMMA, PoS and SuperSense in the IOB2
notation.

Before the beginning of the tests, we prepared the dataset for a proper validation
process. The sentences available in the training set were shuffled and divided into
three separate sets:

• A training set (about the 70% of the corpus) used to train the models;
• A validation set (about 20% of the corpus) used to choose the best model;
• A test set (about 10% of the corpus) used to evaluate the performance.

To compute the baseline result we used a basic configuration with no attributes
features and with the following standard set of local features:

• Features of Current Word: first word of sentence and capitalized; first word of
sentence and not capitalized; two parts joined by a hyphen.

• Features from Surrounding Words: both previous, current and following words are
capitalized; both current and following words are capitalized; both current and
previous words are capitalized; word is in a sequence within quotes.

With 100 iterations of the Maximum Entropy algorithm we obtained an F-score of
71.07 on the validation set.

The testing process consisted in a process of feature selection involving the
creation of many configuration files with different combination of features. In
particular about 300 positional permutations of the attribute features were tested along
with the variation of other parameters like the number of iterations, the cutoff feature
(an option that prevents the tagger to learn from features that appear a number of
times below a given threshold), and refine feature (an option to split the IOB tags into
a more refined set).

The performance of each system was computed testing the model on the validation
set and comparing the accuracy with that of the other systems. Then the same
configuration file was used to train a new model on a dataset resulting from the
merging of the training set and the validation set, and the performance was tested on
the test set. This validation process was done to make sure that the performance does
not degrade on new and unknown data because of overfitting on the validation set.

The best run on the validation set obtained a F-score of 80.01, about 10 points
higher than the baseline.

1.4 Submission

For the final submission we have chosen the four runs with the best and most
balanced performance on the validation and test set. We decided to participate only to
the closed task because we didn’t obtain any performance improvement from the use
of external dictionaries and gazetteers, such as ItalWordNet (IWN) [7].

In the following sections we will describe the features used to create the four runs,
called run [1-4].

Attributes Features. The table below shows the positional parameters of the
attributes features used for the four runs.

Table 1. Attributes features for the four runs

 Run 1-2 Run 3-4

FORM
POSTAG
CPOSTAG
LEMMA

0
-2 0 1 2
-1 0
-1 0

0
0 1
-1 0
0

For example LEMMA -1 0 tells the tagger to use as features the LEMMA of the
previous (-1) and of the current (0) token. The CPOSTAG is the coarse-grained POS
tag that corresponds to the first letter of the POSTAG.

Local Features. The standard set of local features described above for the baseline
was used for all the runs. An additional set of local feature was used for run 3 and run

4 with the aim to improve the performance of the tagger on the classes of SuperSenses
with low F-score. Such classes are: verb.emotion, verb.possession, verb.contact and
verb.creation. A list of the most common non-ambiguous verbs in those classes was
obtained from the training set and they were added as local features for the current
LEMMA. The list of verbs is the following:

• verb.emotion: sperare, interessare, preoccupare, piacere, mancare, temere, amare;
• verb.possession: vendere, perdere, offrire, pagare, ricevere, raccogliere;
• verb.contact: porre, mettere, cercare, colpire, portare, cercare, toccare;
• verb.creation: realizzare, creare, produrre, aprire, compiere.

Global Features. The refine option which performed well for tasks with a lower
number of classes like Named Entity Recognition, proved to be less relevant for SST
where the number of classes and the level of ambiguity is already high, so we didn’t
use it for the runs. Also changing the threshold value of the cutoff option to values > 1
showed no improvements on the performance of the system, so we left it to 0.

Different numbers of training iterations were used for the four runs, in particular:

• run 1: 100;
• run 2: 150;
• run 3: 200;
• run 4: 500.

2 Results

Table 2. UniPI systems results on the closed subtask

 Accuracy Precision Recall FB1

UniPI - run 3 88.50% 76.82% 79.76% 78.27
UniPI - run 2 88.34% 76.69% 79.38% 78.01
UniPI - run 1 88.30% 76.64% 79.33% 77.96
UniPI - run 4 88.27% 76.48% 79.29% 77.86

Run 3 was the best performing system for the Evalita 2011 SST closed task.

3 Discussion

Analysing the data of all the experiments performed while tuning the system, we
observed that our Maximum Entropy tagger achieves the best F1 results with a
reduced number of iterations, i.e. between 100 and 200 iterations (Fig. 1). This is
really important information for future tunings of the tagger: to be able to fix one
important parameter decreases the number of experiments to be performed, and has
also a positive effect on the execution time for training the system.

It is worth nothing that
set were obtained with run 3,
with 500 iterations, obtained the worst score.

Fig. 1. Maximum Entropy performance vs. number of

References

1. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
2. Attardi, G., Dei Rossi

Web Services and Processing Pipelines in HL
3. Chieu, H.L., Ng, H.T

Proceedings of CoNLL
4. Attardi, G., Dei Rossi

and Tool for SuperSense
Resources and Evaluation Conference (LREC 2010),

5. Della Pietra, S., Della Pietra
Transactions on Pattern Analysis and Machine

6. Darroch, J. N., Ratcliff
Mathematical Statistics

7. Roventini, A., Alonge
Semantic Database for Italian.

It is worth nothing that, consistently with this evaluation, the best results on the test
set were obtained with run 3, 2 and 1 with 100, 150 and 200 iterations, while run 4,
with 500 iterations, obtained the worst score.

Maximum Entropy performance vs. number of iterations measured on 300 runs
performed during the feature selection phase.

WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
, Dei Rossi, S., Simi, M.: The Tanl Pipeline. In: Proceedings of Workshop on

Web Services and Processing Pipelines in HLT, co-located LREC 2010, Malta (2010)
H.T.: Named Entity Recognition with a Maximum Entropy Approach.

Proceedings of CoNLL-2003, pp. 160-163. Edmonton, Canada (2003)
Dei Rossi, S., Di Pietro, G., Lenci, A., Montemagni, S., Simi, M.: A Resource

SuperSense Tagging of Italian Texts. In: Proceedings of 7th Language
Resources and Evaluation Conference (LREC 2010), pp. 17--23, Malta (2010)

Della Pietra, V., Lafferty, J.: Inducing Features of Random Fields.
Transactions on Pattern Analysis and Machine Intelligence, 19(4), pp. 380–393 (1997)

Ratcliff, D.: Generalized Iterative Scaling for Log-Linear Models.
Mathematical Statistics, 43(5), pp. 1470--1480 (1972)

Alonge, A., Calzolari, N., Magnini, B., Bertagna, F.: ItalWordNet: a Large
Semantic Database for Italian. In: Proceedings LREC 2000, Athens (2000)

on the test
100, 150 and 200 iterations, while run 4,

300 runs

WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
of Workshop on

located LREC 2010, Malta (2010)
Named Entity Recognition with a Maximum Entropy Approach. In:

A Resource
Proceedings of 7th Language

Inducing Features of Random Fields. IEEE
393 (1997)

Linear Models. Annals of

ItalWordNet: a Large

