
UNIBA: Super-sense Tagging at EVALITA 2011

Pierpaolo Basile

Dept. of Computer Science - University of Bari ”Aldo Moro”
Via Orabona, 4 - 70125 - Bari (ITALY)

basilepp@di.uniba.it

Abstract. This paper describes our participation in EVALITA 2011
Super Sense Tagging (SST) task. The goal of the task is to annotate
each word in a text within a general semantic taxonomy defined by the
WordNet lexicographer classes called super-senses. In this task, we ex-
ploit structured learning based on Support Vector Machine. Moreover, we
propose to solve the data sparseness problem by incorporating features
provided by a semantic WordSpace built exploiting the distributional
nature of words.

Keywords: Super-sense Tagging, Structured Learning, Distributional
Approaches, Support Vector Machine

1 Motivation and Systems Description

Super-sense tagging is the task of annotating each word in a text with a con-
cept coming from a general semantic taxonomy defined by lexicographer classes
called super-senses. A super-sense defines a general concept such as animal,
body, person, communication, motion. Super-sense tagging can be considered as
an half-way task between Named Entity Recognition (NER) [3] and Word Sense
Disambiguation (WSD) [6]. In the former a small set of categories is involved,
for example: Person, Organization, Location, Time. In the latter a very large
set of senses with very specific meanings is taken into account. Super-senses
are not strictly related to proper nouns as named entity classes and provide a
more abstract set of meanings which simplifies the problem of sense disambigua-
tion. Super-sense tagging combines, in a such way, a small-sized set of categories
typical of NER with meanings provided by super-senses. We can consider Super-
sense tagging a simpler version of WSD, where a smaller number of meanings is
involved.

The small set of senses allows to use robust supervised learning approaches,
such as sequence labelling methods trained on a hand-tagged corpus. However,
structured learning is subject to the data-sparseness problem. This side effect
is more evident when lexical features are involved (like in super-sense task),
because test data can contain words with low frequency (or absent) in training
data.

In this paper, all proposed systems rely on supervised methods for super-
sense tagging based on Support Vector Machines (SVM) a state-of-art machine



learning algorithm. Moreover, we propose to solve the data sparseness problem
by incorporating features provided by a semantic WordSpace built exploiting
the distributional nature of words. The core idea behind the WordSpace is that
words and concepts are represented by points in a mathematical space, and this
representation is learned from text in such a way that concepts with similar or
related meanings are near to one another in that space (geometric metaphor of
meaning). According to the distributional hypothesis [4], the meaning of a word
is determined by the rules of its usage in the context of ordinary and concrete
language behaviour. Hence, words are semantically similar if they share contexts.

The main idea of our work is to improve the robustness of our super-sense
tagging approach by extending lexical information through distributional analy-
sis. Using distributional analysis we expect that in semantic spaces, words with
similar meaning are represented close in WordSpace. We can rely on this prop-
erty to solve the problem of data-sparseness by adding distributional information
about words as features into the structured learning strategy.

1.1 WordSpace Building

We use the SemanticVectors package1 [7], an opensource tool, to build the
WordSpace. SemanticVectors creates semantic WordSpace from free natural lan-
guage text using the Random Indexing (RI) technique. RI is based on the concept
of Random Projection [1]. Specifically, RI creates the WordSpace in two steps:

1. a random vector is assigned to each context. This vector is sparse, high-
dimensional and ternary, which means that its elements can take values in
{-1, 0, 1}. The random vector contains a small number of randomly dis-
tributed non-zero elements (seeds), and the structure of this vector follows
the hypothesis behind the concept of Random Projection;

2. random vectors are accumulated incrementally by analyzing contexts in
which terms occur. In particular, the semantic vector assigned to each word
is the sum of the random vectors of the contexts in which the term occur. It
should be pointed out that random vectors are added by multiplying them
by the term frequency.

In particular, we exploit RI to build two different spaces using two different
definitions of context:

1. Wikipedia pages: a random vector is assigned to each Wikipedia page;
2. Wikipedia categories: the idea is that categories can identify more general

concepts in the same way of super-senses. In this case, for each category a
random vector is created.

Before the building of WordSpaces, we need to index all Wikipedia pages
using the last dump provided by Wikipedia foundation. During the indexing
step we extract page categories using a regular expression2 and add these as

1 Available on-line: http://code.google.com/p/semanticvectors/
2 Categories are defined in the page using Mediawiki syntax.



meta-data to each page. After this first indexing step, we build a second in-
dex containing a document for each category. That index is necessary to build
the WordSpace which relies on Wikipedia category as context. We use Apache
Lucene3, an open-source API, for indexing.

Finally, we run SemanticVectors tool on each index, obtaining as result the
two WordSpaces. Table 1 reports information about WordSpaces, in particular:
the number of contexts (pages or categories) C, the space dimension D and the
number of no-zero elements (seeds) in random vectors S.

Table 1. WordSpaces info

WordSpace C D S

Wikipedia pages 1,617,449 4,000 10
Wikipedia categories 98,881 1,000 10

1.2 Learning Strategy and Features Description

We use a set of lexical/morphological and contextual features to represent each
word w in the training data, in particular:

1. the word w plus contextual words: w
−1 and w+1 (the first word to the left

and the first word to the right);
2. the lemma of the word lw plus contextual lemmas: lw−1 and lw+1;
3. the part-of-speech (PoS) tag of the word posw plus contextual PoS-tags:

posw−1 and posw+1;
4. the super-sense assigned to the most frequent sense of the word w. The most

frequent sense is computed according to sense frequency in MultiSemCor;
5. the first letter of the PoS-tag, generally it identifies the word-class: noun,

verb, adjective and adverb;
6. a binary feature that indicates if the word starts with an upper-case charac-

ter;
7. the grammatical conjugation of the word w (e.g. -are, -ere and -ire for Italian

verbs);
8. distributional features: words in the WordSpace are represented by high-

dimensional vectors. We use as features all the components in the word
vector −→w .

As learning method we adopt Support Vector Machines (SVM). In particular,
we propose four systems:

1. uniba SST Closed yc is based on SVM using only features provided by
organizers (excluding the features 4, 5, 6, 7, 8). We use an open-source tool
YAMCHA [5] that is a generic text chunker based on SVM adopted in sev-
eral NLP tasks such as PoS tagging, named entity recognition and phrase
chunking.

3 Lucene is available on-line: lucene.apache.org.



2. uniba SST Open yo works like the first system and uses all the features
excluding the feature 8 (distributional information).

3. uniba SST Open SVMcat relies on distributional information. Distribu-
tional features are numerics and cannot be represented in YAMCHA which
manages only discrete values. Moreover, distributional features are repre-
sented by high-dimensional vectors. For these reasons we adopt LIBLINEAR
[2], a library for large linear classification. LIBLINEAR provides good re-
sults where a large number of features is involved using a linear mapping
instead of non-linear kernels such as polynomial kernels adopted, for exam-
ple, by YAMCHA. LIBLINEAR implements linear support vector machines
that are very efficient on large sparse datasets. This system exploits the
WordSpace built using Wikipedia category.

4. uniba SST Open SVMterm works like the previous system but it relies
on the WordSpace built on Wikipedia pages.

2 Evaluation

The dataset used to perform the training step is provided by organizers. The
training corpus consists in about 276,000 word forms divided into 11,342 sen-
tences and 430 documents. Words are tagged with their super-sense in IOB2
format: B for the word at the begin of the annotation, I for inside and O for
outside words. IOB2 schema allows to annotate multi-words expressions. The
training contains also information about PoS-tag and lemma. The IOB2 format
can be used by YAMCHA without any transformation, while to build the system
based on LIBLINEAR we need to transform the IOB2 dataset into LIBLINEAR

data-format which requires a line for each example (word). Each line contains
the classid, in our case the tag assigned to the word, and the list of features as
follows: featureid : featurevalue. LIBLINEAR requires that each data instance
(example) is represented as a vector of real numbers. For each value assumed by
no-numeric feature, a featureid is generated. In this case, the featurevalue can
assume only two values: 1 if the featureid occurs in the data instance otherwise
0. It is important to underline that also SVM implemented in YAMCHA requires
only numeric features, but the transformation from IOB2 format is automatically
made by YAMCHA.

The test data provided by organizers consists in about 44,900 words divided
into 64 documents. The testing data are in the same format of training data
without information about super-sense. For the evaluation, in order to compare
the systems output against the super-sense labels in gold data, the organizers
supply a script which provides information about accuracy, precision, recall and
F-measure for each super-sense type.

2.1 Results

The task plans two different subtask. In the first one, called CLOSED, only the
corpus provided for training can be used by participants. In the second one,



called OPEN, participants can exploit any external resources in addition to the
training data. Table 2 reports the results obtained by all the participants in the
CLOSED subtask, while Table 3 shows results about OPEN subtask. System 1

is the system provided by the other participant.

Table 2. Results for CLOSE evaluation

System A P R F

System 1 0.8850 0.7682 0.7976 0.7827
System 1 0.8834 0.7669 0.7938 0.7801
System 1 0.8830 0.7664 0.7933 0.7796
System 1 0.8827 0.7648 0.7929 0.7786

uniba SST Closed yc 0.8696 0.7485 0.7583 0.7534

Table 3. Results for OPEN evaluation

System A P R F

uniba SST Open SVMcat 0.8877 0.7719 0.8020 0.7866
uniba SST Open SVMterm 0.8864 0.7700 0.7998 0.7846
uniba SST Open yo 0.8822 0.7728 0.7818 0.7773

Our system in the CLOSED subtask is not able to outperform the System

1, while in OPEN subtask the methods which exploit distributional features are
able to outperform System 1. It is important to point out that we are the only
participant in the OPEN subtask. Moreover, we do not know the strategy and
the features exploited by the System 1. This makes impossible to provide some
discussion about the difference between our system and System 1.

Taking into account only our systems, the focus of our discussion is twofold:
(1) prove that distributional information are able to improve the performance
of a structured learning strategy; (2) compare the two WordSpaces: Wikipedia
pages and Wikipedia categories.

Regarding the first point, results show that methods based on distributional
features are able to outperforms all the other systems. This is a very important
outcome as it has been shown that distributional methods are able to deal with
the data-sparseness problem as highlighted by improvements in recall values.
Taking into account the second point, results in Table 3 show that the space built
on Wikipedia categories (Open SVMcat) provides better results, even though
they are not significant.

Moreover, Table 4 reports results of our systems focusing on a subset of the
evaluation. The table takes into account the five most frequent nouns and verbs
super-sense. Table 4 reports the performance in terms of F-measure for each
system; the best result is reported in bold face.



Table 4. Results considering the most five frequent super-senses

EVALITA 2011 SST

NOUNS

Super-sense #n Closed yc Open SVMcat Open SVMterm Open yo

noun.act 2117 77.54 83.99 83.98 80.87
noun.possession 1525 72.54 77.44 78.29 73.48
noun.communication 1498 71.79 70.82 70.34 74.17

noun.group 1116 65.22 60.09 60.73 66.11

noun.artifact 1008 55.93 63.79 62.66 57.68

VERBS

Super-sense #n Closed yc Open SVMcat Open SVMterm Open yo

verb.stative 790 86.30 88.82 88.96 87.02
verb.communication 682 78.05 85.39 84.63 81.38
verb.change 583 68.85 81.70 82.99 75.04
verb.social 346 69.83 78.43 78.30 75.73
verb.cognition 331 74.76 83.11 82.96 79.76

Results show that methods based on distributional features achieve always
the best performance with the exception of noun.communication and noun.group.
In these two cases, the method based on YAMCHA obtains the best performance.
Moreover, in these cases also the method based on only features provided by
organizers (Closed yc) outperforms the ones based on distributional features.
Indeed, it seems that distributional features introduce some noise in training for
these super-senses.

References

1. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Linden-
strauss. Random Structures & Algorithms 22(1), 60–65 (2003)

2. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear
classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

3. Grishman, R., Sundheim, B.: Message understanding conference-6: a brief history.
In: Proceedings of the 16th conference on Computational linguistics - Vol. 1. pp.
466–471. COLING ’96, Association for Computational Linguistics, Stroudsburg, PA,
USA (1996), http://dx.doi.org/10.3115/992628.992709

4. Harris, Z.: Mathematical Structures of Language. New York: Interscience (1968)
5. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Proceed-

ings of the 41st Annual Meeting of the Association for Computational Linguistics.
pp. 24–31. Association for Computational Linguistics, Sapporo, Japan (July 2003),
http://www.aclweb.org/anthology/P03-1004

6. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41, 10:1–
10:69 (February 2009), http://doi.acm.org/10.1145/1459352.1459355

7. Widdows, D., Ferraro, K.: Semantic Vectors: A Scalable Open Source Package and
Online Technology Management Application. In: Proceedings of the 6th Interna-
tional Conference on Language Resources and Evaluation (LREC 2008). pp. 1183–
1190 (2008)


