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Abstract. This document outlines the system submitted by the
Speech and Audio Research Laboratory at the Queensland University
of Technology (QUT) for the Speaker Identity Veri�cation: Application
task of EVALITA 2009. This submission consisted of a score-level fusion
of three component systems, a joint-factor GMM system and two SVM
systems using GLDS and GMM supervector kernels. Development and
evaluation results are presented, demonstrating the e�ectiveness of this
fused system approach.
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1 System Overview

Three component systems were developed by QUT for this evaluation. These
three systems are:

1. Joint Factor GMM-UBM system
2. GMM Supervector SVM system
3. GLDS SVM system

The submitted QUT system was the score-level fusion of these systems. Fusion
was performed on the output scores using linear weights calculated through use
of a logistic regression algorithm. This was performed using the FoCal toolkit [1].
Fusion weights were optimised for the minimum DCF on development evalua-
tions.

The main focus of our development was on the training conditions tc6 and tc5

in which larger quantities of speaker training data from both channel conditions
was available. Our systems, therefore, make little attempt to speci�cally deal
with any channel-speci�c training conditions (tc1 through tc4 ).

1.1 Development Protocol and Data

The EVALITA development protocols were derived from the set of 321 client
access trials from 32 speakers for each of the testing conditions, 1 and 2 (de-
noted as dev_ts1 and dev_ts2, respectively). In addition to these target trials,
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a speaker's impostor trials were made up of the non-target utterances in the
development dataset. This resulted in a total of 5136 trials (2576 female, 2560
male) in each development evaluation condition.

The GMM-UBM con�guration utilised data from the NIST SRE'04, NIST
SRE'05 and Switchboard II corpora for system development as well as EVALITA
ubm and dev data, as detailed below. In contrast to the GMM system, the
development of the SVM subsystems was based solely on data sourced from
EVALITA ubm speech.

2 Joint Factor GMM-UBM System

The acoustic subsystem was a GMM-UBM [2] system with a joint factor analysis
model based on the approach of Kenny, et al. [3] with elements as described
in [4] and [5]. The development of this system was geared toward consistent
performance across all training/testing conditions.

2.1 Feature Extraction

Short-term cepstral feature vectors consisting of 12 MFCCs and 12 corresponding
delta coe�cients were used in this system. Before the features were extracted,
the audio was bandpass �ltered between 300Hz and 3.2KHz, followed by an
energy based speech activity detection (SAD) process. Feature warping [6] was
also applied using a 500-frame window. The application of feature warping in
this system was not ideal as it was applied to each segment independently (rather
than to all segments from a session). This lead to a situation with many segments
having less active speech than the length of the 500-frame sliding window and,
consequently, poor representation of the feature distribution.

2.2 Joint Factor Model

A joint-factor modelling approach very similar to [7] was adopted for this evalu-
ation with low-dimensional subspaces for modelling both speaker characteristics
and session/channel characteristics. The dimensianality of the gender-dependent
speaker and session subspaces were set to 300 and 100 dimensions, respectively.

The speaker and session subspaces were estimated as follows. Gender depen-
dent UBMs were trained based on all the NIST SRE'04 data with a selection of
Switchboard II, Phase 2 and 3 data to increase the diversity of speakers repre-
sented. Based on the �ndings in [4] and [7], a �coupled" estimation method was
used whereby the speaker subspace transform V was �rst fully optimised using
an EM algorithm. A collection of telephony data from Switchboard II, and Mixer
(SRE '04, SRE '05) were used for estimating V . The session subspace transform
U was then optimised again using an EM algorithm and using the previously
trained speaker space. A selection of the EVALITA ubm data was used for this
purpose, with concatenated excerpts from each session � of roughly the length
of the ts1 testing condition � combined to produce �sessions� from each of



the speakers. Around 5,000 of these �sessions� were produced per gender from
the ubm data. Stacking of U matrices from EVALITA and NIST data was not
found to be bene�cial. Finally, D was estimated using data drawn from the dev
speakers of roughly matched length to the tc1/tc2 training conditions.

2.3 Scoring and Normalisation

Scoring was performed using a dot-product approximation of the log-likelihood
ratio (LLR), as proposed in [8]. A dot-probuct was evalutaed between channel-
compensated Baum-Welch statistics of the test utterance and the speaker model
mean supervector, expressed as an o�set from the UBM.

ZT-Norm was utilised for this system. T-Norm models were trained on
EVALITA ubm data. Separate T-Norm lists were created for each of the training
conditions, tc1�tc6, to mimic the quantity of active speech, number and source
(PSTN or GSM) of sessions in each training condition. This resulted in 300 T-
Norm models per gender in the tc1, tc2 and tc5 conditions and 90 per gender in
the tc3, tc4 and tc6 conditions. Z-Norm segments also came from EVALITA ubm

data and were formed in a similar manner, however, Z-norm utterance durations
were matched to the testing length expected in the longer ts2 test condition
(using segments based on the ts1 condition was found to be inferior due to the
short length).

3 Support Vector Machine (SVM) System Commonalities

Two di�erent SVM systems were used in this evaluation: GMM Supervector,
and Generalised Linear Discriminant Sequence (GLDS) systems. Although the
features between con�gurations di�ered, these systems had several common char-
acteristics.

3.1 Intersession Variability Compensation

Nuisance attribute projection (NAP) [9] was applied to SVM systems to remove
session variation in the SVM kernel space. The datasets used to train the gender-
dependent projection matrices consisted of utterances from the EVALITA ubm

data that contained more than 1.5 seconds of active speech. This resulted in
approximately 7700 utterances from 30 speakers in each gender. Attempts were
made to combine those training segments labelled as originating from the same
session into fewer, longer utterances, however, this tended to reduce the bene-
�ts observed from the application of NAP. The 40 dimensions contributing the
greater session variation were removed from all observations used in the GMM su-
pervector SVM while 50 dimensions were removed from the GLDS kernel space.

3.2 SVM Background Dataset

Background examples were trained using the EVALITA ubm data. Each impos-
tor example was trained using a minimum of S seconds of active speech from



the combination of speech segments from a single speaker. For the GMM super-
vector system, S = 75 for training conditions 5 and 6, while S = 50 for all other
conditions. In the GLDS con�guration S = 100 in all training conditions. Mul-
tiple examples were used per speaker where su�cient data was available. The
channel and gender-dependent background datasets consisted of between 100 to
350 examples depending on the value of S and channel conditions.

The use of di�erent lengths of training data was investigated using di�erent
values of S. Interestingly, performance was not maximised when matching the
minimum active speech duration to the expected training or testing utterance
duration. It is believed that a compromise was found between the quality and
quantity of impostor examples in the background dataset with the S chosen.

3.3 Scoring and Normalisation

SVM-based classi�cation scores were given by the distance that a test observa-
tions lies from a trained client hyperplane. In all con�gurations, the background
dataset was used as the T-norm cohort. Consequently, the score normalisation
cohorts matched the channel conditions observed in the training data. ZT-norm
was employed only in the tc5 and tc6 conditions of the GMM-Svec con�guration
using appropximately 1000 Z-norm test segments formed from the EVALITA
ubm data using S = 25.

4 GMM Supervector SVM System

The GMM supervector feature space was created from GMMs trained through
MAP adaptation [2] from the UBM. The mixture component means were
adapted using a relevance factor of τ = 8 while the weights and variances re-
mained constant. The MFCCs used in the adaptation process were previously
described in Section 2.1 with the exception of the MFCCs used in training condi-
tions 5 and 6. Here, feature warping was not employed as it was found to reduce
performance.

The feature space of the SVM was based on the supervector formed from the
concatenation of the adapted mixture component mean vectors. More speci�-
cally, the SVM feature space was established by taking the di�erence between
the supervector of the concatenated Gaussian means of the UBM from the super-
vector formed from the means of the adapted GMM. In this evaluation, a single
supervector was produced to represent a client using all their training segments.

The GMM supervector SVM con�guration is based on the application of
background-normalisation prior to the computation of the linear SVM kernel
matrix [10]. In this technique, each dimension of the SVM feature space is nor-
malised by the mean and standard deviation of the corresponding dimension
of the observations in the background dataset. This normalisation process was
performed subsequent to NAP.



Table 1. Min. DCF and EER obtained for each train-test combination on individual
and submitted (Fused) systems.

Train dev_ts1 dev_ts2 ts1 ts2

Cond. System Min.DCF EER Min.DCF EER Min.DCF EER Min.DCF EER

tc6

GMM-UBM .1085 5.61% .0529 2.25% .1658 6.48% .0893 2.75%

Svec SVM .0571 3.74% .0046 0.62% .2417 6.62% .0549 1.78%

GLDS SVM .1347 6.85% .0572 3.12% .2876 11.98% .1489 5.02%

Fused .0367 2.18% .0043 0.37% .1168 4.59% .0516 1.74%

tc5

GMM-UBM .2050 8.47% .0979 4.67% .2407 7.77% .1395 4.25%

Svec SVM .1336 6.85% .0503 2.49% .2572 9.27% .1013 3.48%

GLDS SVM .3121 11.21% .1514 5.66% .3551 14.87% .2043 7.39%

Fused .1220 4.67% .0319 1.87% .1610 6.03% .0824 3.48%

tc4

GMM-UBM .2643 9.62% .1171 5.60% .3096 10.38% .1826 6.72%

Svec SVM .2674 10.98% .1412 4.92% .3470 11.98% .1761 5.99%

GLDS SVM .3735 14.07% .2618 9.97% .3845 16.75% .2707 9.61%

Fused .2063 8.69% .1007 4.98% .2700 9.75% .1491 6.13%

tc3

GMM-UBM .2910 9.94% .1312 5.99% .2127 8.26% .1234 4.11%

Svec SVM .3246 12.46% .1768 7.73% .3570 12.40% .1545 5.99%

GLDS SVM .3723 15.58% .2697 11.20% .3901 16.23% .2649 9.75%

Fused .2467 9.03% .1406 5.53% .2270 8.15% .0996 4.49%

tc2

GMM-UBM .3376 13.71% .2165 9.97% .3794 13.27% .2529 9.27%

Svec SVM .3597 16.19% .2632 8.73% .4424 17.24% .2452 9.61%

GLDS SVM .4973 19.31% .3574 11.81% .4536 20.27% .3459 13.23%

Fused .3594 12.77% .2065 8.10% .3575 11.78% .2154 8.26%

tc1

GMM-UBM .3263 12.77% .2057 8.40% .2712 11.88% .1900 6.76%

Svec SVM .3751 14.95% .2467 9.03% .4207 15.64% .2500 8.64%

GLDS SVM .3888 19.31% .3265 14.33% .4770 20.24% .3768 13.76%

Fused .3191 11.84% .1618 8.10% .2919 11.15% .1897 6.37%

5 Generalised Linear Discriminant Sequence (GLDS)
SVM System

The generalised linear discriminant sequence (GLDS) SVM con�guration [11]
was based on polynomial expansions. In this work, MFCC feature vectors of 24
dimensions (see Section 2.1) are utilised to produce the 4th degree polynomial
basis terms resulting in an SVM feature space of 20475 dimensions.

Non-parametric rank normalisation [12] was employed in a linear SVM kernel.
This technique operates by replacing each element of an input vector with its
corresponding rank value when ranked against elements of the same index from
a large set of vectors. The rank dataset for this task consisted of a subset of
the NAP training utterances such that 40 utterances from each speaker were
utilised. Rank normalisation was performed prior to NAP.

6 Results

Results of the individual and fused systems constituting this submission are pre-
sented in Table 1. It can be observed that signi�cantly superior performance
was o�ered by the GMM supervector SVM over the alternative classi�ers in
training conditions 5 and 6. In contrast, the GMM-UBM con�guration tended
to provide the best individual system performance in the single-channel training



conditions (PSTN for tc4 and tc2 ; GSM for tc3 and tc1 ). This was particularly
true when limited testing data was available. While the individual system per-
formance o�ered by the GLDS SVM was not always comparable to the other
component systems, it was found to provide complementary information to the
fusion process.

These results suggest that the GMM supervector SVM system found signi�-
cant advantage when training client models using speech from both PSTN and
GSM channels while the GMM con�guration appeared more robust to channel-
dependent training conditions with smaller amounts of training data.

Broadly speaking, the noted trends carried across well from the development
conditions (dev_ts1, dev_ts2 ) to evaluation conditions (ts1, ts2 ). Furthermore,
it can be observed that the performance of the GMM-UBM system su�ered
less from the transition to the unseen evaluation data. The fused evaluation
results also show improvements in almost all conditions, often substantially so.
It appears, however, that the thresholds chosen on the development data were
not suited to the evaluation condition as the actual DCF values are quite poor.
This result is most likely due to the sparsity of development results in the low
miss operating region.
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