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Abstract. This is an analysis and comparison of the accuracy of the
seven primary systems submitted to the EVALITA 2009 Speaker Iden-
tity Verification “Application” Track. We analyze performance accord-
ing to test-segment duration, mode of enrollment and telephone types.
In particular, we highlight two important problems: the difficulty with
mismatched telephone types in enrollment and test; and the difficulty of
consistent score calibration across different conditions.
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1 Introduction

Speaker identity verification (SIV) is the automatic process of recognizing the
identity of an individual from the analysis of his voice. The EVALITA 2009 SIV
“Application” Track focuses on a specific application area of speaker recognition
technology, that is customer authentication and automatic service personaliza-
tion for end users (e.g., in domains like banking, e-commerce, messaging sys-
tems, customer care, etc.). Inspired by larger world-wide evaluation campaigns,
the proposed task is meant to be a first attempt to spread common practices
and evaluation protocols for speaker verification through the Italian research
community.

Systems submitted for this track have been evaluated on a remote authen-
tication by telephone use case scenario. As system performance is affected by
the telephone channel, evaluation data included recordings from both fixed and
mobile telephone networks and in this report, we place special emphasis on the
cross-channel, or mismatched evaluation tests.

2 Participants and Procedures

The EVALITA SIV-A evaluation campaign, as well as all the other ‘speech tasks’
in EVALITA’09, were announced as an afterthought to the other ‘text tasks’.
Indeed, in the original EVALITA’07, there were text tasks only. The introduc-
tion of the speech task was thanks to the Italian Speech Interest Group of ISCA,



that is AISV (Italian Association of Voice Science). The call for participants had
originally been limited to Italian candidates and only later expanded internation-
ally. Although initially about 15 laboratories expressed interest, time constraints
and clashes with Interspeech’09 contributed to trimming this number to 7 who
finally submitted results on time. These laboratories are listed in Table 1.

Table 1. Participant summary.

Participant Abbrev. Team size

AGNITIO AGN 2

Queensland Univ. of Technology—Speech and Audio Research Lab. QUT 4

Radboud Univ.—Nijmegen RUN 2

Tsinghua Univ.—Department of Electronic Engineering TUE 5

Univ. of West Bohemia UWB 2

Univ. of Zaragoza—Aragon Inst. for Engineering Research I3A 5

Validsoft, Univ. of Avignon, Univ. of Swansea VAS 5

No specific problems were encountered in either development or test phases of
the SIV-A task. The solution to distribute the data via FTP, and the decision to
adhere as much as possible to the well known NIST SRE format and procedures,
was found to be a successful strategy. Although this was our first experience in
organising an international evaluation, and in spite of the very severe difficulties
due to the late starting of the campaign, we believe to have reached the goal. The
lessons learned will certainly help us in the organisation of future evaluations,
as we have realised there is high interest in such activities internationally.

3 Test Plan

All data distributed for this evaluation was recorded from land-line (PSTN) or
mobile (GSM) telephone channels. The spoken language is Italian, with speakers
uniformly selected in all regions of Italy.

The evaluation corpus contains enrollment data for 100 client speaker models
(50 female + 50 male), and a set of 4140 verification utterances of which half
were of short duration and half were long.

A separate set of UBM data consists of 60 other speakers (30 female + 30
male), recorded over 20 sessions (10 PSTN calls + 10 GSM calls). The total
duration of the UBM data is 1200 minutes of speech (about 1 minute per call).

For 32 of the clients an additional tuning set of verification utterances were
distributed, for adjusting small parameters sets, like decision thresholds, or score
fusion and calibration coefficients. Participants were not allowed to train large
parameter sets (eigenvoices, eigenchannels, UBM, score normalization cohorts,
etc.) on this tuning set. Large parameter sets could instead be trained on the
UBM data.



Participants submitted results for a prescribed list of verification trials, where
the result for each trial contained a decision (acceptance or rejection of the
claimed identity) and a confidence score. More details about data, protocols and
metrics used can be found in the evaluation guidelines [3].

4 Results

Here we present an analysis of the performance of the primary systems1 submit-
ted by the 7 participants listed in Table 1.

4.1 Analysis subsets

We analyse performance for each of 24 different subsets of the verification trials.
The subsets are defined as all combinations of the 2 test-segment durations, the
6 enrollment conditions and the 2 test-segment telephone types:

{TS1, TS2} × {P, G, 3P, 3G, PG, 3P3G} × {P, G}

where TS1 and TS2 denote the short and the long test durations; P denotes
enrollment or test over PSTN (land-line); G denotes GSM (mobile); where 3P
or 3G denotes enrollment with 3 calls of one telephone type; and where PG or
3P3G denotes enrollment with multiple calls over different telephone types.

4.2 DET curve analysis

In Figures 1 to 7 we present a detailed DET curve [4] analysis of each system on
its own, where performance across the 24 different subsets of verification trials
are contrasted.

In order to better display the many overlapping DET curves on the same
axes, we used the ROC convex hull (ROCCH) algorithm[2] to obtain smoother
curves. Although the ROCCH-DET curve shows lower error-rates in places than
those found on the corresponding traditional stepped DET curve, the ROCCH
curve is not overoptimistic, in the sense that no point on the ROCCH will give a
lower DCF value than that which can be obtained on the traditional ROC/DET
curve. This holds [2] for any DCF parametrization (i.e. for any values of Cmiss,
Cfa and Ptar). Tools for plotting ROCCH-DET curves are available at [1].

Note that the enrollment-test combinations denoted as P-G, G-P, 3P-G and
3G-P are the most challenging ones, since these are cross-channel, or mismatched
conditions and they are represented in our DET-plots as thick curves. The results
of all 7 systems show that this is indeed the case.
1 The VAS system was re-submitted after they had fixed a bug, after the submission

deadline and after release of the answer key. They had used NIST’s DCF parameters,
instead of EVALITA’s to set their decision thresholds. This is the only change in their
re-submission. This bugfix does not change any DET curves, or EER or minDCF.
It does improve actDCF.
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Fig. 1. ROCCH-DET analysis for AGN primary.
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QUT TS1(short test): train − test, P = PTSN, G = GSM, thick = mismatched
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Fig. 2. ROCCH-DET analysis for QUT primary.

4.3 DCF analysis

In Figures 8 and 9 we contrast the relative performance of the 7 submitted
systems for each of the 24 subsets. Goodness is measured in terms of ‘DCF’,
(also known as Cdet), with parameters as defined in the evaluation plan [3]. The
‘actDCF’ value is computed from the hard accept/reject decisions submitted by
participants. As a secondary evaluation measure ‘minDCF’ is computed from
the submitted confidence scores, as the point on the DET curve that minimizes
the DCF.

The DCF values plotted here are normalized (i.e. scaled), such that log DCF =
0 for a system that always chooses accept. (Accept has lower expected cost
than reject, for the EVALITA DCF parametrization). A system that has ac-
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Fig. 3. ROCCH-DET analysis for RUN primary.
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TUE TS1(short test): train − test, P = PTSN, G = GSM, thick = mismatched
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Fig. 4. ROCCH-DET analysis for TUE primary.

tual log DCF > 0 has bad calibration in the sense that it makes worse decisions
than the trivial always accept strategy.

5 Discussion

The results of this evaluation show some predictable trends and some more
unexpected effects. Some of the predictable trends are:

– Shorter test durations give higher error-rates than longer ones.
– Mismatched telephone types give higher error-rates than matched ones (here

most probably the same telephone in enrollment and test).
– Using multiple enrollment calls improves accuracy.

Some of the perhaps more interesting and unexpected effects are:
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I3A TS1(short test): train − test, P = PTSN, G = GSM, thick = mismatched
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Fig. 5. ROCCH-DET analysis for I3A primary.
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UWB TS1(short test): train − test, P = PTSN, G = GSM, thick = mismatched
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UWB TS2(long test): train − test, P = PTSN, G = GSM, thick = mismatched
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Fig. 6. ROCCH-DET analysis for UWB primary.

– The error-rates for the cross-channel conditions were surprisingly high. The
systems submitted in this evaluation were derived from the text-independent
technology that has been proven on the Mixer databases, which were used
in the recent NIST speaker recognition evaluations between 2004 and 2008,
see e.g. [5]. This good performance on the Mixer databases (which contain
many different telephones for most of the speakers) created the expectation
that performance should have been better on the cross-channel data of this
evaluation.

– For some systems there seems to be a considerable advantage in the 3P-G
cross-channel condition (fat black curves) compared to the 3G-P condition
(fat magenta). It seems that only in this case was the cross-channel problem
‘solved’ by a few of the systems, albeit at the considerable expense of multiple
enrollment calls.
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VAS TS1(short test): train − test, P = PTSN, G = GSM, thick = mismatched

 

 

G − P
P − G
3G − P
3P − G
G − G
P − P
PG − G
PG − P
3G − G
3P3G − G
3P − P
3P3G − P

0.1 0.2 0.5  1  2  5 10 20 30 40 

0.1

0.2

0.5

 1 

 2 

 5 

10 

20 

30 

40 

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

VAS TS2(long test): train − test, P = PTSN, G = GSM, thick = mismatched

 

 
P − G
G − P
3P − G
3G − P
G − G
P − P
PG − G
PG − P
3G − G
3P3G − G
3P − P
3P3G − P

Fig. 7. ROCCH-DET analysis for VAS primary.
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Fig. 8. DCF analysis for TS1. Axes are log base 10 of normalized DCF.

– For TS2 (long test), calibration ‘worked’ in the sense that for 6 of the 7
systems, the actual DCF values were better than the trivial always accept
strategy, for all of the different conditions. This suggests all of these systems
would have real benefit to its users. However in the TS1 (short test) case,
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Fig. 9. DCF analysis for TS2. Axes are log base 10 of normalized DCF.

there are more calibration problems, with several actual log DCF values
above 0.

– For all of the systems, there is an almost random variation of goodness of
calibration (difference between actual and minimum DCF) across the differ-
ent conditions. Goodness of calibration is strongly condition-dependent, but
this dependency is different for different systems.
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