Newswire-to-law Adaptation of Graph-based Dependency Parsers

Barbara Plank and Anders Søgaard barbara.plank@disi.unitn.it soegaard@hum.ku.dk

University of Trento University of Copenhagen

> January 24, 2012 Evalita 2011, Rome

The Problem: Domain dependence

A very common problem/situation in NLP:

- > Train a model on data you have; test it, works pretty good
- However, whenever test and training data differ, the performance of such a supervised system degrades considerably (Gildea, 2001)

The Problem: Domain dependence

A very common problem/situation in NLP:

- Train a model on data you have; test it, works pretty good
- However, whenever test and training data differ, the performance of such a supervised system degrades considerably (Gildea, 2001)

Solutions:

- 1. Build a model for every domain we encounter \rightarrow Expensive!
- 2. Adapt a model from a *source* domain to a *target* domain \rightarrow **Domain Adaptation**

Approaches to Domain Adaptation (DA)

- Supervised Domain Adaptation

- Limited annotated resources in new domain (Gildea, 2001; Daumé III, 2007)
- Semi-supervised Domain Adaptation

- Less explored; started to gain attention only recently (Daumé III, 2010, MW Chang, 2010)
- Unsupervised Domain Adaptation¹

 No annotated resources in new domain (McClosky et al., 2006; Blitzer et al., 2006)

¹Until 2010 often called semi-supervised DA (cf. Plank, 2011)

Approaches to Domain Adaptation (DA)

- Supervised Domain Adaptation

- Limited annotated resources in new domain (Gildea, 2001; Daumé III, 2007)
- Semi-supervised Domain Adaptation \rightarrow Task 1

- Less explored; started to gain attention only recently (Daumé III, 2010, MW Chang, 2010)
- Unsupervised Domain Adaptation ^1 \rightarrow Task 2

 No annotated resources in new domain (McClosky et al., 2006; Blitzer et al., 2006)

・ 同 ト ・ ヨ ト ・ ヨ ト

¹Until 2010 often called semi-supervised DA (cf. Plank, 2011)

Our participation in Evalita 2011

We participated in Task 2 (Unsupervised DA) - Question:

How far can we go by exploiting only unlabeled data? Without any hand-correction?

Our participation in Evalita 2011

We participated in Task 2 (Unsupervised DA) - Question:

How far can we go by exploiting only unlabeled data? Without any hand-correction?

Experimental Setup

- Base parser: MSTParser
 - Graph-based dependency parser (minimum spanning tree)
 - Not specific to Italian, needs CoNLL training data
 - Second-order projective parsing mode with 2-best MIRA
- Source domain: newspaper text (Italian ISST-TANL corpus)
 - Train: 70k tokens, 3,2k sents
- Target domain: legal text
 - Devel: 5k tokens, 147 sents
 - Unlabeled: 1,300k tokens, 620k sents

Results: Baseline

What's the parser's performance before adaptation?

Results: Baseline

What's the parser's performance before adaptation?

	LAS	UAS
source devel	78.59	83.87
target devel	76.45	80.67

Table: MSTParser out-of-the box (trained on source data); LAS: Labeled Attachment Score; UAS: Unlabeled Attachment Score.

Results: Baseline

What's the parser's performance before adaptation?

	LAS	UAS
source devel	78.59	83.87
target devel	76.45	80.67

Table: MSTParser out-of-the box (trained on source data); LAS: Labeled Attachment Score; UAS: Unlabeled Attachment Score.

source devel (+nf)	80.19	86.00
target devel (+nf)	76.96	81.22

Table: MSTParser with one new feature (+nf) template (labels for siblings) since annotation distinguishes coordination types (conj/disj).

Adapting the parser to law text

Ways to use unlabeled data:

- 1. Exploiting unlabeled target data
 - 2 methods tested
- 2. Exploiting automatically labeled target data
 - Use base parser to annotate pool of unannotated data
 - 3 methods tested

Exploiting unlabeled target data (1/2)

Instance weighting

- Intuition: weigh each instance in the source data by the probability it was sampled from the target domain
- Implementation: weighting the loss function of the MIRA online algorithm
- Text classifier (trigrams) used to approximate probability distribution and obtain instance weights
- Technically: retrain MSTParser on source by including instance weights
- Result: did not work; far below baseline

Exploiting unlabeled target data (2/2)

Word clusters

- Intuition: address lexical sparsity by clustering words according to contextual similarity
- Implementation: Brown algorithm used to induce clusters from source and target data
- Technically: add new features to MSTParser that replace words with cluster indices; different bit-string prefixes give different granularity

イロト イポト イヨト イヨト

Exploiting unlabeled target data (2/2)

Word clusters

Examples:

0000100 articolo	100101100	dare
0000100 art	100101100	prendere
0000101 art.	100101101	avere
00001100 paragrafo	1001011101	revocare
00001100 comma	1001011101	incaricare
000011010 paragrafi	1001011101	nominare

- Result: did not work either; better than instance weighting but still below baseline (LAS 71%)
- Too many new features? Bad clusters?

Exploiting automatically labeled target data (1/3)Self-training

Take auto-labeled data at face value and add to source

Exploiting automatically labeled target data (1/3)Self-training

Take auto-labeled data at face value and add to source

Result: did not work

Exploiting automatically labeled target data (2/3)

Co-training

- Take auto-labeled data two parsers agree upon
- We used MSTParser and Bohnet's parser
- Results: improved over baseline, approximately +0.3% LAS (on 58k unique sentences the parsers agreed upon)

Exploiting automatically labeled target data (3/3)

Dependency triplets

- ► Extract named dependency relations $r(w_1, w_2)$ from auto-labeled target data \rightarrow learn bilexical preferences
- Calculate normalized point-wise mutual information score:

$$npmi = (\log \frac{f(r(w_1, w_2))}{f(r(w_1, ...))f(r(..., w_2))}) / -\log f(r(w_1, w_2))$$

Example triplets:

0.726149069696 obj informare autorità 0.653647108129 obj adire autorità 0.628772868532 obj consultare autorità 0.9217 mod Stati membro 0.4594 mod Stati extracomintario

Dependency triplets

- Integrate triplets into parser as new features
- A new feature z(t, r) for every major Pos tag t and relation r, e.g. for obj(write, article) add new feature z(VB, OBJ) with score given by NPMI (binned into buckets) → small amount of new features
- Results:

target devel76.96 (79.53)81.2289.26target devel with triplets**78.19** (80.54)82.5790.23

Table: MSTParser with auto-parsed dependency triplets. Score in parenthesis is by excluding punctuation from scoring.

Self-training with and without triplets

토▷ ◀토▷ 토 ∽੧.. 14/17

Submitted Results

- Using only triplets
- Using selftraining with triplets (with 12k sentences added)
- Results on target test set:

	LAS	UAS
model before adaptation	74.62	78.22
self-training with triplets	74.30	78.05
triplets only	74.02	77.92

Table: Results on released test data

Result: Just around baseline performance (slightly below)

Conclusions and Future Work

- Improvements observed on development data did not carry over to test set
- ► Why?
 - Overfitting base model on small amounts of training data?
 - Do we need hand-corrected data? However, adding target devel to source gives only limited improvement:

	LAS	UAS
model before adaptation	74.62	78.22
<pre>supervised (source+target dev)</pre>	75.95	79.47

Table: Results on released test data

Systematic errors in formal law texts? Properties of the data?

Conclusions and Future Work

- A first look One pecularity: enumerations
- Parser got attachment of enumeration wrong in:
 (8) Il presente regolamento non dovrebbe ...
 while it was often correct in similar cases such as:
 a) '' vettore aereo ''
- Influence of different POS tags? 8/N vs. a/S (in PTB both would be LS, list item markers i.e. S?)

LASUASmodel before adaptation (original data)74.6278.22model before adaptation (changing POS)76.4780.52model after adaptation (triplets)77.1781.37

Table: Results on released test data with x/N changed to x/S (24x)

Need deeper error analysis & larger evaluation set

Questions? Comments? Suggestions?

Thank you.

 $\label{eq:theta} The first author would like to thank iKernels (DISI) and PARLI for supporting this research.$

オロト オポト オヨト オヨト ヨー ろくで

Gli Stati membri

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Self-training with and without triplets

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ シック

Sentence Length vs LAS

