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Abstract. With this paper is presented a system for Part of Speech
Tagging, based on the Perceptron Algorithm. In the proposed framework,
the order of the inference is not forced into a monotonic behavior (left-to-
right), but is learned together with the parameters of the local classifier.
The system tested on the task of Italian POS Tagging at EVALITA 2009
obtained the second position, with a Tagging Accuracy of 95.82%.
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1 Introduction

Part of Speech Tagging (POS) is a subtask of Natural Language Processing. The
goal of this task is to assign a label to each word in the text, this label consists
of a combination of lexical and morphological features. The system described in
this paper carries out POS tagging experiments with semi-supervised training.
In particular we extend to the Guided Learning (GL) framework presented in
[1]. This approach is more complex than supervised learning. The system can
learn the parameters for the local classifier from gold standard labels, but has
no indications on the order of inference.

Compared to others approaches, GL shows some advantages, it does not suffer
from the label bias problem [2]. Basing the learning algorithm on the Perceptron
scheme allows one to keep a low system complexity and moderate execution time,
without sacrificing learning capability and quality of the results. With regard
to others systems that use a Perceptron algorithm, like [3], GL introduces a
bidirectional search strategy. Instead of forcing the order of the tagging in a left-
to-right fashion, any tagging order is allowed. It follows a easiest-first approach
and incorporates the learning of the order of inference in the training phase. In
this way right-context and bidirectional-context features can be used at little
extra cost.

As shown by the results obtained in Evalita 2009 POS Shared Tasks and in
[1] [5] and [6], GL is a framework that can be adapted to a variety of tagging
tasks, ensuring state of the art results and short training times.

2 Bidirectional Guided Classification

In this section we present the Inference Algorithm and the Training Algorithm.



2.1 Inference Algorithm

As input to the Inference Algorithm we have a sequence of tokens t1t2 · · · tn. For
each token ti, we have to assign a label li ∈ L, with L being the label set. A
subsequence ti · · · tj is called a span, and is denoted [i, j]. To each span s are
associated one or more hypotheses, composed by a sequence of length |s| over L.

The labels located at the boundaries of an hypothesis sequence are used as
context for labeling tokens outside the span s. In our case a trigram model is
used, so when choosing the label for the token ti we can use the two boundary
labels (li+1, li+2) of the right span [i + 1, j] if this has already been tagged.
Similarly, we can use the two labels (li−2, li−1) as left context for the current
tagging operation in the case that the left span [k, i − 1] is available. We will
refer to the left two label as the left interface Ileft, and to the right two labels
as the right interface Iright.

We denote the boundaries of a span s with b = (Ileft, Iright), b contains the
labels relevant for the tagging of neighboring tokens. We partition the hypotheses
associated with span s into sets compatible with the same boundaries b. For each
span s we use a table Ms indexed by all possible b, so that Ms(b) is the set of
all hypotheses associated with s that are compatible with Ileft and Iright.

For a span s, we denote the associated top hypothesis with:

h∗s = argmax
h∈Ms(b),∀b:Ms(b)6=∅

V (h) (1)

where V is the score function of a hypothesis.
Spans are started and grown by means of tagging actions. Three kinds of

actions are available: it is possible to start a new span by labeling a token with no
context, or expand an existing span by labeling an adjacent token, or merging two
spans by labeling the token between them. In this last case the two originating
spans would be subsequences of the resulting span, and the labeling action of
the token between the spans will use both right and left context information.

For each hypothesis h associated with a span s, we maintain its most recent
tagging action a(h), and the hypotheses, if any, that have been used as left
context h∗L(h) and right context h∗R(h).

We can now define the score function for hypotheses in a recursive fashion:

V (h) = V (h∗L(h)) + V (h∗R(h)) + U(a(h)) (2)

The score of the current tagging action U(a(h)) is added to the score of the
top hypotheses that might have served as context and have been merged in the
new hypothesis. The score of the labeling action U(a(h)) is computed through
a linear combination of the weight vector w and the feature vector of the action
f(a(h)):

U(a(h)) = w · f(a(h)) (3)

To reduce the search space explored during the inference algorithm we apply
a beam search strategy. The beam width B determines the maximum number



of boundaries b maintained for each span s. The value of B is given as input, as
the weight vector w used to compute the score of an action.

The algorithm works using two groups of spans: P is the list of accepted
spans, and Q is the a queue of candidate spans. Q can contain new spans of
length one or extension of spans previously accepted and at the current time
located in P .

At the beginning of the inference algorithm P is initialized with the empty
set, and Q is filled with candidate spans [i, i] for each token ti, and for each label
l ∈ L assigned to ti we set:

M[i,i]((l, l)) = {i→ l} (4)

where i→ l represent the hypothesis consisting of the action with no context
which assigns label l to wi. This provides the set of starting hypotheses.

The loop of the algorithm repeatedly selects a candidate span s′ from Q, s′

is the span with the highest action score, so we pick the span that represents the
next tagging action we are most confident about.

Now we use s′ to update P and Q. First we update P , adding s′ and removing
the spans included in s′. Then let S be the set of spans removed from P . We
update Q removing each span which takes one of the spans in P as context, and
replace it with a new candidate span taking s′ as new context.

The algorithm terminates when P contains a single span covering the whole
token sequence and Q becomes empty.

The loop is guaranteed to terminate since at each iteration a span is expanded
or added in P , and considering that P cannot have overlapping spans we can
conclude that the number of iterations needed is linear with the size of the token
sequence.

2.2 Learning Algorithm

In this section we describe the Guided Learning Algorithm, used to learn the
weight vector w with a Perceptron-like algorithm.

For the training a set of token sequences {T1, T2, · · · , Tm} is provided as
input. to each token sequence Tr = (t1, t2, · · · tn) is paired a gold standard label
sequence of the same length Lr = (l1, l2, · · · , ln). At the beginning of the learning
algorithm we initialize P and Q as we do in the inference algorithm. Then we
iterate selecting the candidate span s′ for the next labeling action from Q like
in the inference algorithm. If the s′ top hypothesis match on the gold standard,
we update P and Q as in the inference algorithm. Otherwise, we update the
weight vector w by promoting the features of the gold standard, and demoting
the features of the action of the candidate top hypothesis, like in the Perceptron
algorithm. Then we undo the last labeling action by replacing the elements in
Q with a new list of candidates containing all the possible spans based on the
context spans in P , and computing the new scores with the updated weight
vector w.

In our implementation we have used the Averaged Perceptron [3] and Per-
ceptron with margin [4].



3 Experiments

In this section we are going to describe the setting chosen for the final experiment
of the Evalita 2009 POS tagging task, we also report and discuss the results.

3.1 Setting

In the setting of our best system we set beam width B = 3, as threshold between
speed and accuracy.

Among the set of features used, we distinguish between context features and
lexical features. Context features are meant to capture the information of the
surrounding words and labels, while lexical features concern the form of the
current word and possibly its relation with lexical characteristics of the context
words.

Context Features : To exploit the bidirectional context window over the labels
and words we adopted a feature set that already has given state of the art results
in POS tagging task on others corpora. We report the feature templates in Table
1 .

Table 1. Templates for context features: 1) single word features, 2) couple of words
features, 3) left context features, 4) right context features, 5) and bidirectional features.

1 [w0], [w−2], [w−1], [w1], [w2]

2 [w−1,w0], [w0,w1]

3 [p−1], [p−2,p−1], [p−2,p−1,w0], [p−1,w0], [p−2], [p−2,w0]

4 [p1], [p1,p2], [p1,p2,w0], [p1,w0], [p2], [p2,w0]

5 [p−1,p1], [p−1,p1,w0]

We made attempts to modify this set of features, removing features subsets
and trying to find new feature patterns with semi-automatic techniques. Unfor-
tunately these attempts lead to no improvements. This made us believe that
this set of features is general enough for this kind of task, and preserves its
effectiveness with corpora in different languages.

Considering the fine grained structure of the tag-set used, we introduced a
new kind of context feature that considers just the prefix of the actual POS tag,
excluding the morphological information encoded in the last part of the label.
After trying different settings we obtained the best improvement using the label
prefixes for a window of size three centered in the current word. This led to a
3% relative error reduction.

Lexical Features : As lexical features for the current word we consider: the
presence of special characters of symbols like digits or ’-’; the prefixes and suffixes



up to length of 9 characters; the capitalization of the first letter or of the whole
word, in relation with the capitalization of context words.

About the capitalization lexical feature, we observed that treating the first
word of the sentence separately from the other words of the sentence lead to an
improvement of the performances. This resulted in a relative error reduction of
0.9%.

3.2 Results

The results reported in this section are those obtained on the Evalita 2009 data
set, this corpus is composed of articles from an Italian newspaper, tagged with
the Tanl tag-set consisting of 328 tags, grouped in 14 basic categories.

The corpus was distributed divided in 3 segments, a “train” set (3,719 sen-
tences) used for training the system, a “devel” set (147 sentences) to be used as
for development, and a “test” set (147 sentences) provided with no labels and
to be tagged for the final evaluation.

The participating systems are evaluated on the tagging accuracy (TA) com-
puted on the submitted test set. The unknown words tagging accuracy (UWTA)
it is also considered. The results for the first three systems in the final rank are
reported in Table 2.

Table 2. First three systems classified in the Evalita 2009 POS tagging task, our
Guided Learning based system ranked second.

TA UWTA

system A 96.34% 91.07%

Guided Learning 95.85% 91.41%

system C 95.73% 90.15%

We can observe that the first three systems reached a similar score, we can
consider this value to be the state of the art for this corpus. The system C just
made 30 more labeling errors than the system A, out of a total of 4919 tags.

We can also notice that the Guided Learning approach obtained the best
result on the UWTA. This is probably a consequence of the lack of constraints
in the inference sequence. As explained earlier, the Guided Learning approach
follows a tagging order based on an easiest-first heuristic. This method postpones
difficult decisions (as in the case of unknown words), and assigns a label when
more context information is available.

Moreover we observe that the error rate obtained on this POS corpus is no-
ticeably higher then the error rate obtained on others POS corpora. As example
we cite [1], where an earlier version of this system reached the state of the art TA
of 97.33% on the Wall Street Journal corpus tagged with Penn Treebank tag-set.
We think that this gap is not due to the difference of language, but rather it can
be caused by the use of a far larger tag-set (that brings more uncertainty during



the prediction phase), or can be due to the presence of higher internal noise of
the corpus.

Since the system relies on a simple, but effective inference algorithm and the
training algorithm is based on the averaged Perceptron (known for the speed
of its implementations), we were able to record short execution times despite
the large tag-set. On a common Desktop (equipped with a Core2 Duo CPU
at 2.66GHz) the 20 rounds of training were completed in 12 hours, and the
prediction of the test set was done in 2 minutes. During the training phase 1M
features were generated.

4 Conclusion

In this paper we extended the work on the Guided Learning approach, adapting
it to a new task, and applying new features. We successfully participated at
the Evalita 2009 POS shared task, achieving the second position in the final
rank. The evaluation results show that a state of the art tagging accuracy is
reached. Furthermore the system obtained the best score in the unknown words
tagging accuracy showing the effectiveness of the GL approach of dynamically
incorporating the order of inference and the local classification in the learning
phase. In related works, described in [1] [5] and [6], we applied this approach to
a variety of tasks (POS tagging, NER, NP chunking) reaching state of the art
results with moderate execution time. With this work, we have further proved
the validity of Guided Learning.
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