
Ensemble-based POS tagging of Italian

Anders Søgaard

Center for Language Technology
University of Copenhagen

Abstract. Simple learning algorithms are used to learn what labels to
assign words based on the predictions provided by two non-optimized
part-of-speech taggers, a tagger with a different tag set and, possibly, an
earlier run of the classifier. Our accuracy on the tagged La Repubblica
corpus of Italian newspaper articles is 3.6% higher than that of our best
input tagger in general, and ∼16.4% better in tagging unknown words.
Results are generally non-competitive because of non-optimized input
taggers. In Sect. 3, we show (i) how results can be improved with the
current input taggers (by ∼0.7% and ∼2.3, resp.), and (ii) how more
competitive results can be obtained with more qualified input taggers.

Keywords: POS tagging, ensemble-based learning, unsupervised clus-
ters, semi-supervised learning.

1 Introduction

A simple technique is presented for improving the results of part-of-speech (POS)
taggers. The point of this work, however, is not as much to provide a competitive
system as it is an attempt to provide a proof-of-concept for a novel meta-learning
strategy.

Several meta-learning strategies have been applied to POS tagging in the
literature, incl. bagging, boosting, random forests and majority voting of other-
wise unrelated input taggers [1–3]. Our work is related to boosting and majority
voting of input taggers in several ways and can to some extent be seen as a
combination of these two techniques.

Boosting was introduced by Rob Schapire and Yoav Freund in 1990, e.g. [4],
and is, put briefly, a set of techniques for iteratively learning weak classifiers that
can be combined into a stronger end classifier. Each addition of a weak classi-
fier increases the weights of misclassified examples and decreases the weights of
correctly classified examples. Similarities between boosting and transformation-
based learning, e.g. as in the Brill tagger [5], have been pointed out in [2]. The
weak classifiers in boosting are often combined into a strong classifier in a ma-
jority voting scheme. In majority voting, the input classifiers may also, however,
be arbitrarily related, e.g. off-the-shelf POS taggers. The end classifier simply
classifies examples according to majority vote. In more refined models, the votes
are weighted according to their accuracy.

The ensemble technique introduced here simply treats the combination of
classifiers as a classification problem itself. The predicted classes of the input



classifiers, e.g. on a development section, are features to the end classifier. So,
for example, the end classifier may learn rules of the form “if classifier A classifies
i as x, and classifier B classifies i as y, i is likely to belong to the class z.” Note
that z does not have to equal x or y. Consequently, the oracle performance of
our input classifiers, i.e. the performance of an oracle that always choses to rely
on the best input classifier for any particular data instance, is not necessarily an
upper bound of the performance of our end classifier.

Other advantages include that (i) our classifier can employ arbitrarily many
features other than the input classifiers (Sect. 3.2). Consequently, it is more flex-
ible. If our end classifier is confidence-rated, (ii) weights can be returned to our
parsing algorithm for reparsing. Finally, (iii) the technique works even if you only
have two input classifiers. (In fact, as shown in Sect. 3.4, it leads to improve-
ments with only one input classifier.) It also seems to be more insensitive to the
type of input classifiers. Bagging, for instance, only improves the performance
of unstable learners, but the technique introduced here has been shown to work
for a wide range of different learning algorithms, incl. both Naive Bayes and the
k nearest neighbor algorithm (Sect 3.1).

The work most closely related to this is the so-called “contextual cues” in [1].
It seems that they essentially run a k nearest neighbor classifier on tags predicted
by input classifiers. They do not consider other features, but for any word wi in
position i they also consider the predicted tags for words wi−1 and wi+1. [6] and
others also test second level classifiers, but typically without additional features,
and with only small improvements over the best input tagger.

The structure of what follows: Sect. 2 describes how the submitted results
were obtained. Sect. 3 describes possible improvements to our system, and finally,
Sect. 4 summarizes the main contribution of this work.

2 Submitted results

As input or component taggers trained on the training data we used (a) the
maximum-entropy-based POS tagger first described in [7] that comes with the
maximum entropy library in [8], and (b) a version of the the transformation-
based tagger introduced by Eric Brill [5]. Finally, we used the TreeTagger [9]
with a pretrained model (different training data, different tag set). It is clear
that this set of input classifiers would make majority voting pointless.

Our results and results of our component taggers on the development data:

Dev TA UWTA

MaxEnt 90.75 76.00
Brill 89.44 63.15

Tree(0) 93.96 89.32
Tree(1) 94.41 90.36
kNN(0) 94.70 88.98
kNN(1) 94.78 88.98

We implemented a classification tree algorithm and a k nearest neighbor
algorithm and also tried to use both iteratively, i.e. where the end classifier’s



predictions are used as input features in the subsequent round. Both algorithms
converged on a near-optimal result after the second round (1). For this reason
we chose to submit second round results for both algorithms.

The submitted results contain a serious bug. One of the features was sim-
ply omitted in the test data. In the table below, we present the official results
(o) and the results obtained using our corrected procedure (c), incl. positions
and positions wrt. unknown words (UW) out of the 11 runs submitted to the
EVALITA 2009 POS Tagging Evaluation Task. Test results for the component
taggers are also presented:

Test TA(o) UWTA(o) Pos UW-Pos

Tree(o) 91.60 86.03 10 6
kNN(o) 91.64 86.14 11 5
Tree(c) 91.54 85.91 11 8
kNN(c) 93.27 87.17 9 5

MaxEnt 89.21 70.79 - -
Brill 89.67 66.09 - -

3 Subsequent work

3.1 Other classifiers

In our subsequent work on this ensemble-based technique we first tested a wider
set of simple learning algorithms. Bayes(k) is Naive Bayes with k-estimates,
and the combinations in the last three rows combine weights of different learners
weighted wrt. their predicted accuracy. Our best scores with these simple features
take us to 5th position and 4th position for unknown words.

Test TA UWTA

Tree 92.01 86.60
kNN 93.19 87.06

Bayes(5) 93.60 87.40
Bayes(10) 93.64 87.40
Bayes(10)/Tree 93.39 88.09
Bayes(10)/kNN 93.72 87.74
Bayes(10)/kNN/Tree 93.47 88.32

3.2 Other features

Since our set-up is so flexible, it was easy to add additional features to our model
too. In our subsequent experiments we made use of suffixes, unsupervised word
clusters and WordNet semantic fields.

Suffixes For suffixes, we simply used the last three letters in each word.

Test: Suff TA UWTA

Tree 92.01 86.71
kNN 93.66 88.77

Bayes(10)/kNN 93.88 88.66
Bayes(10)/kNN/Tree 93.49 88.66



Unsupervised clusters For unsupervised clusters, we used the Java imple-
mentation of the Biemann unsupervised graph-based clustering algorithm [10],
trained on a 9M sentence Italian corpus (Leipzig University).

Test: Clust TA UWTA

Tree 91.83 86.37
kNN 93.19 87.40

Bayes(10)/kNN 93.58 87.97
Bayes(10)/kNN/Tree 93.23 87.51

The unsupervised clusters apparently lead the classification tree off track,
while it does help the k nearest neighbor algorithm’s classification of unknown
words. This apparently transfers to the ensemble of Naive Bayes with 10-estimates
and k nearest neighbor, but the overall accuracy of this ensemble decreases a
bit. The drop in classification tree performance hurts the bigger ensemble con-
siderably.

Suffixes and unsupervised clusters were tested to see if the positive improve-
ments were accummulative:

Test: Suff+Clust TA UWTA

Tree 91.83 86.83
kNN 93.39 88.43

Bayes(10)/kNN 93.76 88.77
Bayes(10)/kNN/Tree 93.45 88.55

Results are mixed. The smaller ensemble does accummulate precision wrt. un-
known words, while the k nearest neighbor algorithm doesn’t. Oddly enough we
also obtain our best result wrt. unknown words for classification trees this far.
Obviously this highlights the unstability of classification trees. Some experiments
were conducted using random forests, but with non-competitive results.

WordNet In our next experiment we imported semantic fields from the Ital-
ian MultiWordNet [11]. Näıvely we used the first semantic field for the first
synsem associated with a particular lemma in the database. No lemmatization
was used, so very few features were extracted. In spite of this serious limitation,
the WordNet features did improve accuracy considerably:

Test: WordNet TA UWTA

Tree 92.05 86.60
kNN 93.41 87.51

Bayes(10)/kNN 93.66 88.09
Bayes(10)/kNN/Tree 93.45 87.86

Combining suffixes and WordNet synsems gave some of our best results:

Test: WordNet+Suff TA UWTA

Tree 92.01 86.71
kNN 93.62 89.32

Bayes(10)/kNN 93.92 88.89
Bayes(10)/kNN/Tree 93.58 88.32



3.3 Better input classifiers

SVMTool [12] (model 4) in its default setting obtains much better results on
both the development section (92.30/72.79) and test section (92.09/72.74) than
any of our original input taggers. Since SVMTool has relatively low accuracy
wrt. unknown words, best results were obtained using unsupervised clusters:1

Test: WordNet+Suff+Clust TA UWTA

Tree 93.07 84.54
kNN 94.04 89.35

Bayes(10)/kNN 94.00 88.43
Bayes(10)/kNN/Tree 94.00 87.63

3.4 Semi-supervised learning

In this experiment, we only used two features, words and SVMTool predictions.
SVMTool was first run on the first part of our Italian corpus; the excerpt chosen
equals our training data in size (∼150k). We then trained three (n in the general
case) classifiers – Bayes(3), Tree and kNN – on this unlabeled data and adopted
the following simple semi-supervised learning strategy: if two (n− 1) classifiers
agree on a data instance, assign it their prediction and include it in the training
data of the third (nth) classifier. The procedure is continued until no more
examples are added to the labeled data sets. The strategy is tentatively called
n-ary co-training. Only overall accuracies are listed, along with the number of
labeled examples in the initial and the final round. Improvements in average
score are modest, but noticeable.

Round 1 Labeled data Round 5 Labeled data

Bayes(3) 93.23 4867 93.25 6167
Tree 93.31 4867 93.27 5567
kNN 92.62 4867 93.07 9937

AV 93.05 4867 93.20 7224

3.5 Future work

Some of our input classifiers have very low accuracy wrt. unknown words. It
might improve overall accuracy if we used a simpler model to classify unknown
words, i.e. removing less probable predictions (MaxEnt and Brill).

Our model does not reparse the input using our confidence-rated classifier.
This would no doubt also increase overall performance.

Even in the absence of reparsing, it is possible to do reranking of a set of high-
quality hypotheses. Say, for instance, a threshold 0 < τ < 1 is introduced such
that if the weight associated with the 2nd best hypothesis w(h2) for a word is
1 It is important to note the importance of classifier diversity. If in the current set-

up the Brill tagger is replaced with SVMTool model 0, alongside SVMTool model
4, which produce very similar results, our accuracy wrt. unknown words decreases
considerably.



close to that of the best one, i.e. w(h2)
w(h1)

≥ τ , all candidate labelings of a sentence
with the word’s best and 2nd best hypotheses are ranked and included in an
(average) n-best list. The candidate list can be limited to the n best hypotheses
on average by varying the threshold.

Finally, the entire official training section is used for training our input clas-
sifiers, and only the development section is used for adjusting the weights of our
end classifier. A more balanced split might also improve our overall accuracy.

4 Conclusion

Some corrected and improved results were presented for the ensemble-based
system we used in the EVALITA 2009 POS Tagging Evaluation Task. Using our
poor input classifiers, our best results rank 5 in general (out of 11 submitted
runs) and 4 wrt. unknown words; our official results rank 10 and 5, resp.

The main point of this work, however, was to provide a proof-of-concept for
classification-based ensemble learning. The advantages of this approach can be
summarized as: (i) flexible inclusion of features, (ii) improvements over best input
classifier even with only two classifiers (unlike majority voting), (iii) no upper
bound from oracle performance, (iv) applicability to both stable and unstable
learning algorithms.

References

1. Brill, E., Wu, J.: Classifier combination for improved lexical disambiguation. In:
Proceedings of COLING-ACL (1998)

2. Abney, S., Schapire, R., Singer, Y.: Boosting applied to tagging and PP-
attachment. In: Proceedings of EMNLP (1999)

3. Marquez, L., Rodriguez, H., Carmona, J., Montolio, J.: Improving POS tagging
using machine-learning techniques. In: Proceedings of EMNLP (1999)

4. Schapire, R.: The strength of weak learnability. Machine Learning, vol. 5, issue 2
(1990)

5. Brill, E.: Transformation-based error-driven learning and natural language pro-
cessing. Computational Linguistics, vol. 21, issue 4 (1995)

6. Sjoebergh, J.: Combining POS-taggers for improved accuracy on Swedish text. In:
Proceedings of NODALIDA (2003)

7. Ratnaparkhi, A.: Maximum entropy models for natural language ambiguity reso-
lution. PhD thesis, University of Pennsylvania (1998)

8. Zhang, L.: Maximum entropy modeling toolkit for Python and C++. University
of Edinburgh (2004)

9. Schmidt, H.: Improvements in part-of-speech tagging with an application to Ger-
man. In: Proceedings of ACL-SIGDAT (1995)

10. Biemann, C.: Unsupervised part-of-speech tagging employing efficient graph clus-
tering. In: Proceedings of COLING/ACL Student Session (2006)

11. Pianta, E., Bentivogli, L., Girardi, C.: MultiWordNet: developing an aligned mul-
tilingual database. In: Proceedings of the 1st International Global WordNet Con-
ference (2002)

12. Gimenez, J., Marquez, L.: SVMTool: a general POS tagger generator based on
support vector machines. In: Proceedings of LREC (2004)


