
Experiments in tagger combination: arbitrating,
guessing, correcting, suggesting

Giuseppe Attardi1, Antonio Fuschetto1, Francesco Tamberi1, Maria Simi1,
and Eva Maria Vecchi2

1 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

{attardi,simi}@di.unipi.it
2 Istituto di Linguistica Computazionale, CNR, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy

Abstract. The paper reports experiments with several strategies of tagger
combination, using two well known taggers, TreeTagger and Hunpos. The most
successful experiment,which achieved the best score in the Evalita 2009 Open
Task, is a hybrid solution combining an easiest first iterative strategy with
hand-written arbitration rules and a quality lexicon. The system used in the
Closed Task uses a similar combination of two variants of Hunpos, together
with correction/guessing rules.

Keywords: NLP, PoS Tagging, Evaluation.

1 Introduction

In the SemaWiki project pipeline [1] we have been using two well-known taggers:
TreeTagger [2] and Hunpos [3]. In most cases of agreement between the taggers, the
tagging was correct; in cases of disagreement the mistakes appeared to be of a very
different nature. Hence we explored means to combine the results of the two taggers
in order to improve their accuracy. In our experiments we tried several combination
strategies:

1. an easiest-first iterative strategy;
2. arbitration rules, for deciding which of the predictions to trust;
3. correction and guessing rules for classification of new words;
4. suggestions: having one tagger to provide suggestions to the other.

2 The Taggers

TreeTagger [2] is a statistical part-of-speech tagger, which can be trained to new
languages supplying to it a lexicon and a tagged training corpus.

Probabilistic models based on n-grams usually estimate the probability of a tagged
sequence of words with first or second order Markov models. The TreeTagger method
differs from the classical methods in the way it estimates the transition probabilities,

i.e. the probability of a tag given the previous ones. Instead of using maximum
likelihood estimation, in order to address the problem of sparse data, zero frequencies
and ungrammaticalities, TreeTagger uses a binary decision tree.

We reworked some parts of the implementation of TreeTagger to improve its
performance, by using memory mapping for model data, adding UTF-8 support and
tuning the decision tree analysis. This version is available as part of the Tanl toolkit
[1].

Hunpos [3] is an open source reimplementation of TnT [4].

3 Open task

A large Italian lexicon of 1,267,677 forms, developed as part of the SemaWiki
project, was used as an external resource, both with TreeTagger and Hunpos.

The full-form lexicon is generated from a base lexicon of 65,500 lemmas, initially
inspired by [5], and updated along several years and cross-checked with other online
dictionaries ([6], [7]). The lexicon was extended to provide information on transitive
verbs, on superlatives and on diminutives and aligned to the conventions of the Tanl
POS specifications [8]. The generation of the full-form lexicon was done with a script
derived from a set of inflection rules supplied by Achim Stein.

Our baseline for this task is the accuracy of Hunpos (96.27%), which is slightly
better than that of TreeTagger (95.32%). The efficiency of Hunpos is impressive:
~0.03min for training, ~0.07min for tagging the Test Set.

3.1 Arbitrating and guessing

For the first two runs of the open task the two taggers were used as black boxes and
an elaborate arbitration strategy was used to resolve disagreements between them,
taking for granted the output in case of agreement. Statistics computed on the
development corpus indicate an agreement between the two taggers of 95.26% with
an accuracy of 93.80%. A perfect arbitration strategy in case of disagreement could at
best achieve a 4.74% increase in performance, which corresponds to an overall
accuracy of 98.54%.

The arbitration strategy is a hybrid solution which uses a set of arbitration rules,
accounting for most common mistakes, followed by a selection between the two
outputs based on a statistical estimate of their plausibility.

Arbitration rules are used for deciding, in case of disagreement, which tagger to
trust in a specific context. Many rules were suggested by looking at the outputs of the
two taggers but only a few proved effective. Only six rules were selected with a series
of experiments. In the following we indicate with tti and thi the tags predicted for
token wi by TreeTagger and Hunpos respectively.

1. if tti ∈ {‘Vm2sc’, ‘Vcp1s’} and thi = ‘SP’ then thi
2. if thi = ‘SP’ and beginning of sentence (bos) then tti
3. if thi = ‘CS’ then thi
4. if tti = ‘B’ then tti

5. if tti begins with ‘S’ and wi is a new word, present in the lexicon then tti
6. if both tti and thi begin with ‘S’ and wi is a new word not in the lexicon

then classify_unknown(wi, thi, bos)

The last rule is not a pure arbitration rule, but rather a guessing rule, since it uses a
function (classify_unknown) which injects some heuristics for guessing the correct
category of unknown names, i.e. not found in the training and absent from the
lexicon.

The statistical combination method uses a simple score, computed on the training
set, as a measure of plausibility of the tags proposed by the taggers. In particular we
estimate the probability of a pos tag (without morphology) given the previous and
next tag and compute a plausibility score as the average of the two probabilities:

S(ti) = (P(ti | ti-1) + P(ti | ti+1))/2 (1)

P(ti | tk) is estimated on the training corpus by F(ti; tk) / F(ti), i.e. by the frequency of
the bigram (ti; tk) relative to the frequency of tag ti. In case one of the surrounding tags
is missing, the conditional probability of the tag given the missing neighbor is set to 0.

Following an idea presented in [9], an iterative easiest-first strategy is responsible
for arbitrating among the two taggers’ outputs, in case the rules in the previous phase
fail to make a decision. The iterative strategy works as follows:

1. Start with tags assigned in the previous phase; initialize a threshold;
2. For each token wi, with predicted tags tti and thi:

 If either wi-1 or wi+1 have an assigned tag,
return tti when S(tti) > S(thi) and S(tti) > threshold;
return thi when S(thi) > S(tti) and S(thi) > threshold;

3. Decrease threshold; go back to 2 until all words are tagged.

In the first and second run we used the arbitration strategy described above, using
TreeTagger and a right-to-left version of Hunpos, which performed slightly better
than left-to-right Hunpos on the development set (96.45%). With this strategy we
obtained a significant improvement in accuracy on the development set, i.e. 97.23%.

3.2 Suggesting and arbitrating

For the last two runs we explored a technique that we had successfully applied to
parsing, i.e. exploiting hints from one parser in a second parsing step [10]. In the case
of POS tagging, we exploited the fact that TreeTagger accepts in the input a list of
possible tags for each token. Hence we modified Hunpos to produce the log
likelihood score for each of its predictions.

The outputs from a base run of Hunpos and of TreeTagger on the test file are
analyzed: where the taggers disagree but the likelihood score from Hunpos is higher
than a threshold, its prediction is added as hint in the test file. The threshold is
different depending on the type of tag, according to an overall accuracy for the parser
that was estimated from the development set. The test file, augmented with
suggestions from Hunpos, is passed to a second tagging stage by TreeTagger,
producing the final output. In principle the process could be iterated, by using the

output of the taggers again, but these would require modifying Hunpos in order to
accept hints as well.

We also tested a naïve combination, based on the overall accuracy of the taggers
on each POS tag, which achieved an accuracy of 96.31% on the development test set,
compared to a 96.68% of the fancier combination.

Our final run was produced by applying the arbitration strategy described earlier to
the output of the previous tagger combination and the output of Hunpos, obtaining an
improvement of 0.31%.

3.3 Results

We submitted four runs for the Open Task, summarized in Table 1 in terms of the
tagging accuracy on all words (TA) and unknown words (UWTA).

The difference between SemaWiki 1 and 2 is the corpus used for training the
taggers and for computing the scores: in the first run we used only the training data
provided to the participants; in the second run, we used also the data provided for
development. The difference in performance gives us a measure of the contribution of
using the development corpus for domain adaptation, from newspaper style to
Wikipedia style of texts.

The best run for the open task was the second one using the hybrid arbitration
strategy with training performed on the joined train and development corpora. The
PoS accuracy of 96.75% is also the best result for the Evalita 2009 PoS tagging open
task. Nevertheless this result is lower than expected, considering that on the
development corpus we had achieved 97.23%. This drop might be due to overfitting
by the selected rules. Moreover, Hunpos left-to-right performs better (96.54%) than
Hunpos right-to-left (96.26%) on the Test Set, so also the choice of direction for
Hunpos was an overfit.

The accuracy measured discarding the morphological features, i.e. considering just
the fine-grained POS tags, shows a consistent improvement of about 0.28% in all
runs, meaning that morphology accounts for only a small percentage of errors.

Table 1. Open task results

Run POS TA CPOS TA POS UWTA CPOS UWTA

SemaWiki 2 96.75% 97.03% 94.62% 95.30%
SemaWiki 1 96.44% 96.73% 94.27% 95.07%
SemaWiki 4 96.38% 96.67% 93.13% 93.81%
SemaWiki 3 96.14% 96.42% 92.55% 93.24%

Evalita best 96.75% 97.03% 94.62% 95.30%

The accuracy on the unknown words is also the best result for the Evalita 2009 PoS
tagging open task, since it closely follows the accuracy computed on all words with a
2–3% drop. The tagger is also relatively efficient (2.05min for obtaining the models,
55sec for tagging the test set).

4 Closed task

For the closed task, using TreeTagger was out of question since it performs quite
badly without a lexicon. Hunpos performance instead, with 95.22% accuracy on the
development set, is quite remarkable also without lexicon. A right-to-left version of
Hunpos achieves 95.14% accuracy, but the disagreement between the left-to-right and
the right-to-left version is insignificant (on the order of 0.02%).

The two taggers being so close in accuracy, an arbitration strategy, like the one
used for the closed task, would not be very promising.

4.1 Correcting and guessing

For this task we tried a different approach by considering likelihood scores assigned
by the two taggers to their own predictions; more precisely for each tag the taggers
output a log-likelihood measure, i.e. the logarithm of the probability of the predicted
tag. We used log-likelihood to devise a set of initial tags to rely on.

The strategy goes through two stages:
1. If the log-likelihood score of one of the taggers is above a given threshold (we

used –3 in the runs) than return the tag else leave the tag unassigned for the
second stage.

2. An easiest-first iterative strategy, similar to the one used for the open task, is
used to fill the holes.

Stage 1 is used as a basis for the iterative strategy, since, differently from the open
task, which uses taggers agreement and basic arbitration rules before the iterative
strategy, taggers’ agreement is too high in this case and does not leave much room for
improvement. The iterative strategy of stage 2 is still based on plausibility scores
estimated on the train corpus, in the same way we have discussed for the open task.

Besides this, before assigning a tag, we use correction rules, in both the first and
second stage. In particular in the first stage we use only two rules for correcting
tokens improperly classified as proper names, a weakness of Hunpos; in the second
stage, in addition to those, we use three more correction/guessing rules for dealing
with unknown nouns, adjectives, verbs. The guessing rules also embed a specific
strategy for guessing the morphology of unknown words: the morphology of word
forms is derived once for all from a large corpus of non-annotated text by taking into
account common determiners and adjectives appearing before the form.

As before, the difference between the first and second run in the final submission is
the corpus used for training the taggers and for computing the scores: the first run
uses only the training data; the second run, both the training and development data.

4.2 Results

Our best result, obtained with the second run, is 95.73%. The accuracy of the best
scoring system of the Evalita 2009 PoS tagging closed task is 96.34%, a difference of
0.61%. The loss in performance due to the morphology is 0.79%, higher than in the
closed task, as one would expect since morphology, and in particular the n feature (for

‘underspecified’) of nouns and adjectives, is hard to derive from the local context.
Our strategy for guessing the morphology was not effective enough.

Table 2 summarizes the results in tagging accuracy in the Closed Task.

Table 2. Closed task results

Team POS TA CPOS TA POS UWTA CPOS UWTA
SemaWiki 2 95.73% 96.52% 90.15% 93.47%
SemaWiki 1 95.24% 96.00% 87.40% 90.72%
Evalita best 96.34% 96.91% 91.41% 93.81%

5 Conclusions

The taggers we developed for Evalita 2009 are accurate and efficient. However the
quite elaborate arbitration strategy of our best run in the Open Task achieves only a
0.21% improvement over the accuracy of Hunpos left-to-right on the test set
(96.54%). This is definitely not enough to justify the considerable decrease in
efficiency in tagging, due to the use of two taggers and the combination strategy. The
good accuracy of our system is mainly due to the quality of the lexicon, which
accounts for a +1.05% increase in accuracy when used with Hunpos alone.

Acknowledgments. We are grateful to all the SemaWiki team for producing quality
resources for this task and in particular to Simonetta Montemagni for supervising the
linguistic soundness and providing advice on critical cases. The SemaWiki project
was partially funded by the Fondazione Cassa di Risparmio di Pisa.

References

1. Attardi, G., et al.: Tanl (Text Analytics and Natural Language Processing): Analisi di Testi
per il Semantic Web e il Question Answering, http://medialab.di.unipi.it/wiki/SemaWiki

2. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of
the International Conference on New Methods in Language Processing, pp. 44--49 (1994)

3. Halácsy, P., Kornai, A., Oravecz, C.: HunPos – an open source trigram tagger. In:
Proceedings of the Demo and Poster Sessions of the 45th Annual Meeting of the ACL, pp.
209--212 (2007)

4. Brants, T.: TnT–A Statistical Part-of-Speech Tagger. In: Proceedings of ANLP-NAACL
Conf. (2000)

5. Zingarelli: Il nuovo Zingarelli minore. Zanichelli (2008)
6. Gabrielli: Il Grande Italiano, http://dizionari.repubblica.it/
7. De Mauro, T.: Il Dizionario della lingua italiana, http://www.demauroparavia.it/
8. Tanl POS Tagset. http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset (2007)
9. Tsuruoka, Y., Tsujii, J.: Bidirectional Inference with the Easiest-First Strategy for Tagging

Sequence Data. In: Proceedings of HLT-EMNLP, pp. 467--474 (2005)
10. Attardi, G., Dell'Orletta, F.: Reverse Revision and Linear Tree Combination for

Dependency Parsing. In: Proceedings of NAACL HLT (2009)

