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Abstract. The paper reports experiments with several strategies of tagger 
combination, using two well known taggers, TreeTagger and Hunpos. The most 
successful experiment,which achieved the best score in the Evalita 2009 Open 
Task, is a hybrid solution combining an easiest first iterative strategy with 
hand-written arbitration rules and a quality lexicon. The system used in the 
Closed Task uses a similar combination of two variants of Hunpos, together 
with correction/guessing rules. 
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1 Introduction 

In the SemaWiki project pipeline [1] we have been using two well-known taggers: 
TreeTagger [2] and Hunpos [3]. In most cases of agreement between the taggers, the 
tagging was correct; in cases of disagreement the mistakes appeared to be of a very 
different nature. Hence we explored means to combine the results of the two taggers 
in order to improve their accuracy. In our experiments we tried several combination 
strategies: 

1. an easiest-first iterative strategy; 
2. arbitration rules, for deciding which of the predictions to trust; 
3. correction and guessing rules for classification of new words; 
4. suggestions: having one tagger to provide suggestions to the other. 

2 The Taggers 

TreeTagger [2] is a statistical part-of-speech tagger, which can be trained to new 
languages supplying to it a lexicon and a tagged training corpus. 

Probabilistic models based on n-grams usually estimate the probability of a tagged 
sequence of words with first or second order Markov models. The TreeTagger method 
differs from the classical methods in the way it estimates the transition probabilities, 



i.e. the probability of a tag given the previous ones. Instead of using maximum 
likelihood estimation, in order to address the problem of sparse data, zero frequencies 
and ungrammaticalities, TreeTagger uses a binary decision tree. 

We reworked some parts of the implementation of TreeTagger to improve its 
performance, by using memory mapping for model data, adding UTF-8 support and 
tuning the decision tree analysis. This version is available as part of the Tanl toolkit 
[1]. 

Hunpos [3] is an open source reimplementation of TnT [4]. 

3 Open task 

A large Italian lexicon of 1,267,677 forms, developed as part of the SemaWiki 
project, was used as an external resource, both with TreeTagger and Hunpos. 

The full-form lexicon is generated from a base lexicon of 65,500 lemmas, initially 
inspired by [5], and updated along several years and cross-checked with other online 
dictionaries ([6], [7]). The lexicon was extended to provide information on transitive 
verbs, on superlatives and on diminutives and aligned to the conventions of the Tanl 
POS specifications [8]. The generation of the full-form lexicon was done with a script 
derived from a set of inflection rules supplied by Achim Stein. 

Our baseline for this task is the accuracy of Hunpos (96.27%), which is slightly 
better than that of TreeTagger (95.32%). The efficiency of Hunpos is impressive: 
~0.03min for training, ~0.07min for tagging the Test Set. 

3.1 Arbitrating and guessing 

For the first two runs of the open task the two taggers were used as black boxes and 
an elaborate arbitration strategy was used to resolve disagreements between them, 
taking for granted the output in case of agreement. Statistics computed on the 
development corpus indicate an agreement between the two taggers of 95.26% with 
an accuracy of 93.80%. A perfect arbitration strategy in case of disagreement could at 
best achieve a 4.74% increase in performance, which corresponds to an overall 
accuracy of 98.54%. 

The arbitration strategy is a hybrid solution which uses a set of arbitration rules, 
accounting for most common mistakes, followed by a selection between the two 
outputs based on a statistical estimate of their plausibility. 

Arbitration rules are used for deciding, in case of disagreement, which tagger to 
trust in a specific context. Many rules were suggested by looking at the outputs of the 
two taggers but only a few proved effective. Only six rules were selected with a series 
of experiments. In the following we indicate with tti and thi the tags predicted for 
token wi by TreeTagger and Hunpos respectively. 

1. if tti ∈ {‘Vm2sc’, ‘Vcp1s’} and thi = ‘SP’ then thi 
2. if thi = ‘SP’ and beginning of sentence (bos) then tti 
3. if thi = ‘CS’ then thi 
4. if tti = ‘B’ then tti 



5. if tti begins with ‘S’ and wi is a new word, present in the lexicon then tti  
6. if both tti and thi begin with ‘S’ and wi is a new word not in the lexicon 

then classify_unknown(wi, thi, bos) 

The last rule is not a pure arbitration rule, but rather a guessing rule, since it uses a 
function (classify_unknown) which injects some heuristics for guessing the correct 
category of unknown names, i.e. not found in the training and absent from the 
lexicon. 

The statistical combination method uses a simple score, computed on the training 
set, as a measure of plausibility of the tags proposed by the taggers. In particular we 
estimate the probability of a pos tag (without morphology) given the previous and 
next tag and compute a plausibility score as the average of the two probabilities: 

S(ti) = (P(ti | ti-1) + P(ti | ti+1))/2 (1) 

P(ti | tk)  is estimated on the training corpus by F(ti; tk) / F(ti),  i.e. by the frequency of 
the bigram (ti; tk) relative to the frequency of tag ti. In case one of the surrounding tags 
is missing, the conditional probability of the tag given the missing neighbor is set to 0. 

Following an idea presented in [9], an iterative easiest-first strategy is responsible 
for arbitrating among the two taggers’ outputs, in case the rules in the previous phase 
fail to make a decision. The iterative strategy works as follows: 

1. Start with tags assigned in the previous phase; initialize a threshold; 
2. For each token wi, with predicted tags tti and thi: 

 If either wi-1 or wi+1 have an assigned tag, 
return tti when S(tti) > S(thi) and S(tti) > threshold; 
return thi when S(thi) > S(tti) and S(thi) > threshold; 

3. Decrease threshold; go back to 2 until all words are tagged. 

In the first and second run we used the arbitration strategy described above, using 
TreeTagger and a right-to-left version of Hunpos, which performed slightly better 
than left-to-right Hunpos on the development set (96.45%). With this strategy we 
obtained a significant improvement in accuracy on the development set, i.e. 97.23%. 

3.2 Suggesting and arbitrating 

For the last two runs we explored a technique that we had successfully applied to 
parsing, i.e. exploiting hints from one parser in a second parsing step [10]. In the case 
of POS tagging, we exploited the fact that TreeTagger accepts in the input a list of 
possible tags for each token. Hence we modified Hunpos to produce the log 
likelihood score for each of its predictions.  

The outputs from a base run of Hunpos and of TreeTagger on the test file are 
analyzed: where the taggers disagree but the likelihood score from Hunpos is higher 
than a threshold, its prediction is added as hint in the test file. The threshold is 
different depending on the type of tag, according to an overall accuracy for the parser 
that was estimated from the development set. The test file, augmented with 
suggestions from Hunpos, is passed to a second tagging stage by TreeTagger, 
producing the final output. In principle the process could be iterated, by using the 



output of the taggers again, but these would require modifying Hunpos in order to 
accept hints as well. 

We also tested a naïve combination, based on the overall accuracy of the taggers 
on each POS tag, which achieved an accuracy of 96.31% on the development test set, 
compared to a 96.68% of the fancier combination. 

Our final run was produced by applying the arbitration strategy described earlier to 
the output of the previous tagger combination and the output of Hunpos, obtaining an 
improvement of 0.31%. 

3.3 Results 

We submitted four runs for the Open Task, summarized in Table 1 in terms of the 
tagging accuracy on all words (TA) and unknown words (UWTA).  

The difference between SemaWiki 1 and 2 is the corpus used for training the 
taggers and for computing the scores: in the first run we used only the training data 
provided to the participants; in the second run, we used also the data provided for 
development. The difference in performance gives us a measure of the contribution of 
using the development corpus for domain adaptation, from newspaper style to 
Wikipedia style of texts. 

The best run for the open task was the second one using the hybrid arbitration 
strategy with training performed on the joined train and development corpora. The 
PoS accuracy of 96.75% is also the best result for the Evalita 2009 PoS tagging open 
task. Nevertheless this result is lower than expected, considering that on the 
development corpus we had achieved 97.23%. This drop might be due to overfitting 
by the selected rules. Moreover, Hunpos left-to-right performs better (96.54%) than 
Hunpos right-to-left (96.26%) on the Test Set, so also the choice of direction for 
Hunpos was an overfit. 

The accuracy measured discarding the morphological features, i.e. considering just 
the fine-grained POS tags, shows a consistent improvement of about 0.28% in all 
runs, meaning that morphology accounts for only a small percentage of errors. 

Table 1.  Open task results 

Run POS TA CPOS TA POS UWTA CPOS UWTA 

SemaWiki 2 96.75% 97.03% 94.62% 95.30% 
SemaWiki 1 96.44% 96.73% 94.27% 95.07% 
SemaWiki 4 96.38% 96.67% 93.13% 93.81% 
SemaWiki 3 96.14% 96.42% 92.55% 93.24% 

Evalita best 96.75% 97.03% 94.62% 95.30% 
 
The accuracy on the unknown words is also the best result for the Evalita 2009 PoS 
tagging open task, since it closely follows the accuracy computed on all words with a 
2–3% drop. The tagger is also relatively efficient (2.05min for obtaining the models, 
55sec for tagging the test set). 

 



4 Closed task 

For the closed task, using TreeTagger was out of question since it performs quite 
badly without a lexicon. Hunpos performance instead, with 95.22% accuracy on the 
development set, is quite remarkable also without lexicon. A right-to-left version of 
Hunpos achieves 95.14% accuracy, but the disagreement between the left-to-right and 
the right-to-left version is insignificant (on the order of 0.02%).  

The two taggers being so close in accuracy, an arbitration strategy, like the one 
used for the closed task, would not be very promising. 

4.1 Correcting and guessing 

For this task we tried a different approach by considering likelihood scores assigned 
by the two taggers to their own predictions; more precisely for each tag the taggers 
output a log-likelihood measure, i.e. the logarithm of the probability of the predicted 
tag. We used log-likelihood to devise a set of initial tags to rely on. 

The strategy goes through two stages: 
1. If the log-likelihood score of one of the taggers is above a given threshold (we 

used –3 in the runs) than return the tag else leave the tag unassigned for the 
second stage.  

2. An easiest-first iterative strategy, similar to the one used for the open task, is 
used to fill the holes. 

Stage 1 is used as a basis for the iterative strategy, since, differently from the open 
task, which uses taggers agreement and basic arbitration rules before the iterative 
strategy, taggers’ agreement is too high in this case and does not leave much room for 
improvement. The iterative strategy of stage 2 is still based on plausibility scores 
estimated on the train corpus, in the same way we have discussed for the open task. 

Besides this, before assigning a tag, we use correction rules, in both the first and 
second stage. In particular in the first stage we use only two rules for correcting 
tokens improperly classified as proper names, a weakness of Hunpos; in the second 
stage, in addition to those, we use three more correction/guessing rules for dealing 
with unknown nouns, adjectives, verbs. The guessing rules also embed a specific 
strategy for guessing the morphology of unknown words: the morphology of word 
forms is derived once for all from a large corpus of non-annotated text by taking into 
account common determiners and adjectives appearing before the form. 

As before, the difference between the first and second run in the final submission is 
the corpus used for training the taggers and for computing the scores: the first run 
uses only the training data; the second run, both the training and development data. 

4.2 Results 

Our best result, obtained with the second run, is 95.73%. The accuracy of the best 
scoring system of the Evalita 2009 PoS tagging closed task is 96.34%, a difference of 
0.61%. The loss in performance due to the morphology is 0.79%, higher than in the 
closed task, as one would expect since morphology, and in particular the n feature (for 



‘underspecified’) of nouns and adjectives, is hard to derive from the local context. 
Our strategy for guessing the morphology was not effective enough. 

Table 2 summarizes the results in tagging accuracy in the Closed Task. 

Table 2.  Closed task results 

Team POS TA CPOS TA POS UWTA CPOS UWTA 
SemaWiki 2 95.73% 96.52% 90.15% 93.47% 
SemaWiki 1 95.24% 96.00% 87.40% 90.72% 
Evalita best 96.34% 96.91% 91.41% 93.81% 

5 Conclusions 

The taggers we developed for Evalita 2009 are accurate and efficient. However the 
quite elaborate arbitration strategy of our best run in the Open Task achieves only a 
0.21% improvement over the accuracy of Hunpos left-to-right on the test set 
(96.54%). This is definitely not enough to justify the considerable decrease in 
efficiency in tagging, due to the use of two taggers and the combination strategy. The 
good accuracy of our system is mainly due to the quality of the lexicon, which 
accounts for a +1.05% increase in accuracy when used with Hunpos alone. 
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