The Berkeley Parser at the EVALITA 2011 Constituency Parsing Task

Alberto Lavelli

FBK-irst, Trento, Italy

24 January 2012

Part of a wider research effort with Anna Corazza and Giorgio Satta devoted to

- application of state-of-the-art statistical parsing techniques to Italian (TLT 2004, EVALITA 2007 & 2009)
- exploration of information-theoretic measures that account for the empirical difference of the experimental results on different treebanks/languages (not yet published)

- Dan Bikel's parser lexicalized
 - head-driven
 - splits RHS in *n* relations with the rule head
- Stanford parser (Klein & Manning) unlexicalized
 - adds annotations to nodes to take context into account
 - rule Markovization to cope with data sparsity

Both parsers can be (and have already been) applied to different languages

- identification of rules for finding lexical heads
- selection of a lower threshold for unknown words

No further language-dependent adaptations:

- for Bikel's parser, no tree transformations analogous to those introduced by Collins for the PennTreeBank
- for the Stanford parser, only basic annotations, i.e., parent annotation for both nonterminals and PoS tags and horizontal Markovization

Application of state-of-the-art statistical parsing techniques to Italian

• experimental results with

- different parsing methods
 - Bikel's parser
 - Stanford parser
- on a single treebank
 - Italian Syntactic-Semantic Treebank (ISST, TLT 2004 paper)

	LR	LP	F_1
Bikel < 40	68.58	68.40	68.49
Stanford best < 40	66.31	62.19	64.18

Results on ISST much worse than on English (and also worse than on other languages, e.g. Chinese, Czech, German) Two possible explanations for the gap in performance:

- intrinsic differences between the two languages
- differences between the annotation policies adopted in different treebanks

Two lines of research:

- same experiments on a different Italian treebank (TUT: Turin University Treebank)
- exploring information theoretic measures to compare the difficulty of different parsing tasks

- New measure, called Expected Conditional Cross-Entropy (ECC), for comparing parsing difficulty across treebanks
- Conjecture: ECC strictly related to parsing performance
- ECC as an effective measure of parsing difficulty
- Conjecture tested comparing ECC and standard performance measures (P/R/F₁/ExactMatchRate) on treebanks for English (WSJ), French (FTB), German (Negra, TüBa-D/Z) and Italian (ISST, TUT)

	LR	LP	F_1	EMR
EVALITA 2007	70.81	63.35	67.96	
Bikel test	71.73	69.88	70.79	9.05
Bikel test $<$ 40	72.04	70.08	71.05	9.84
Stanford best	61.19	62.25	61.72	5.00
Stanford best < 40	63.03	64.23	63.62	5.43
ISST				
Bikel < 40	68.58	68.40	68.49	
Stanford best < 40	66.31	62.19	64.18	

Image: A matrix and a matrix

글 🕨 🖌 글

æ

Berkeley parser (Petrov & Klein)

- based on a hierarchical coarse-to-fine parsing, where a sequence of grammars is considered, each being the refinement, i.e. a partial splitting, of the preceding one.
- no need for language-specific adaptations
- state-of-the-art performance for English on the Penn Treebank
- outperforms other parsers on German and Chinese (Petrov & Klein NAACL 2007), and French (Seddah et al. IWPT 2009)

	LR	LP	F_1	EMR
Bikel	68.51	64.45	66.42	14.00
Bikel < 40	68.99	65.03	66.95	14.81
Berkeley - iteration #4	80.02	77.48	78.73	21.00
Berkeley - iteration $\#4 < 40$	79.90	77.92	78.90	22.22

< ∃ →

-

Image: A matrix and a matrix

æ

- Using again the Berkeley parser.
- Didn't manage to explore reranking and self-training to improve performance (lack of time)

10-fold cross validation on the training set

	LR	LP	F_1	EMR
Berkeley	78.74	79.32	78.99	26.33
Berkeley < 40	81.88	82.38	82.10	31.82

Results on the test set

	LR	LP	F_1	EMR
Berkeley	83.54	84.12	83.83	22.74
Berkeley < 40	83.69	84.35	84.02	24.20

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

- Improvement w.r.t. the previous editions of EVALITA
- Performance on Italian now at a reasonable level (given the limited size of TUT)
- Exploring reranking and the use of self-training to improve performance
- Berkeley parser ready for integration in the TextPro NLP suite (http://textpro.fbk.eu)

Thanks to Dan Bikel, Chris Manning and his colleagues, and Slav Petrov for making their parsers available.