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Abstract. In this paper, we present a Semantic Role Labeling tool for
Italian language for the FLaIT competition at Evalita 2011. This tool
presents an hybrid approach to resolve the different sub-tasks that com-
posed the SRL task. We apply a discriminative model for the boundary
detection task based on lexical and syntactical features. A distributional
approach to modeling lexical semantic information, instead, for the Ar-
gument Classification sub-task is applied in a semi-supervised perspec-
tive. The combination of these models achieved interesting results in the
FLaIT competition.
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1 Introduction

In the Frame Labeling over Italian Texts (FLaIT) evaluation proposed in Evalita
2011 we present a system for the automatic labeling of semantic roles defined by
the semantic theory FrameNet. The proposed tool performs the whole chain for
the Semantic Role Labeling task, we did not participate, instead, to the Frame
Prediction subtask. This SRL tool consists in three computational steps:

– Boundary Detection (BD): Identifying the boundaries of arguments of the
lexical unit.

– Argument Classification (AC): Labeling the identified boundaries with the
correct semantic roles, in an independent process for each boundary.

– Join Re-ranking (RR) : The joint model is used to decide the entire argument
sequence among the set of the n-best competing solutions computed in the
previous step.

The Evalita 2011 FLaIT challenge is the first tentative to evaluate SRL tools
for Italian language. Up until now, only one work for Italian language has been
proposed over a small dataset [2]. Although several machine learning models
obtain interesting results, they present some limitations in term of generalization
power with a consequential loss of labeling accuracy. As discussed also in [10, 6]
this phenomena affects mainly the performance of argument classification (AC)



process in out-of-domain tests and in poor training conditions (e.g. over non
English languages characterized by few annotated examples) is still significant. In
the proposed tool, in order to overcame these limitations, we adopt two different
learning approaches to train the different modules corresponding to the sub-
tasks. In particular, we adopt a discriminative boundary detection model trained
with lexical and syntactic features as in the study of [6]. The comprehensive list
of features used in learning of BD models is discussed in Section 2. In Section
3 we focuses the discussion on the argument classification step. The model we
present adopts a simple feature space by relying on a limited set of grammatical
properties, thus reducing its learning capacity. Moreover, it generalizes lexical
information about the annotated examples by applying a geometrical model, in a
Latent Semantic Analysis style, inspired by a distributional paradigm [9], while
Section 4 describes a joint re-ranking module based on HMM model. Finally, the
results achieved in FLaIT and some final conclusions are discussed in Section 5.

2 Boundary Detection

In this experimentation we adopt a boundary detection model trained with lexi-
cal and syntactic features as in the study of [6]. We trained a boundary detection
(BD) model using SVM classifier1 . The features used are in line with the clas-
sical BD approaches described in [4]. We trained three different models, one for
the most frequent part-of-speeches of lexical unit : verbs, nouns, adjectives. This
choice was made in order to reduce the data sparseness in the feature space.
Features used in BD training are discussed below. We distinguish them along
two lines: syntactically and lexically based.

2.1 Syntactic Features

Syntactic features represent all the information coming from the dependency
graph.

– Part-of-speech : Part of Speech of the following tokens: Lexical unit, Head
argument, Rightmost dependent of the argument head, Leftmost dependent
of the argument head, Parent node of the lexical unit.

– Position Position of the head word of the argument with respect to the
lexical unit: Before, After, or On.

– Voice Define the form of the verbal lexical units (active or passive).
– Dependency Path A string representation of the path through the depen-

dency parse from the target node to the argument node.
– Relation to Parent : Dependency relation between the lexical unit and its

parent.
– Parent Has Obj : Feature that is set to true if the parent of the lexical

unit has an object.
1 In this experimentation we use the SVM svmLight software release.

http://svmlight.joachims.org/



– Grammatical Function : The grammatical function of the argument node.
– Child Dep Set : The set of grammatical functions of the direct dependents

of the lexical unit.

2.2 Lexical Features

The lexical features exploit the lexical level of the sentence.
– Lemmas: The following lemmas: Lexical unit, Frame element argument

head, Rightmost dependent of the argument head, Leftmost dependent of
the argument head, Parent node of the lexical unit.

– FrameElements: The list of the core frame elements for a given frame.

In this model, we adopt the dependency syntactic annotation provided in the
FLaIT dataset, applying the classifier on dependency nodes. This approach could
be affect by the parser errors in cases in witch an argument boundary does not
fully match with the exact span of a dependency node.

3 Argument Classification

In the argument classification step, we have explored two different aspects. First,
we propose a model that does not depend on complex syntactic information in
order to minimize the risk of overfitting, generalizing lexical information about
the annotated examples by applying a geometrical model, in a Latent Semantic
Analysis style, inspired by a distributional paradigm [9]. Second, we improve the
lexical semantic information available to the learning algorithm. The proposed
”minimalistic” approach will consider only two independent features:

– the semantic head (h) of a role, as it can be observed in the grammatical
structure.

– the dependency relation (r) connecting the semantic head to the predicate
words.

In distributional models, words are thus represented through vectors built
over these observable contexts: similar vectors suggest semantic relatedness as
a function of the distance between two words, capturing paradigmatic (e.g. syn-
onymy) or syntagmatic relations [8].

Vectors
−→
h are described by an adjacency matrix M , whose rows describe

target words (h) and whose columns describe their corpus contexts. Latent Se-
mantic Analysis (LSA) [7], is then applied to M to acquire meaningful repre-
sentations

−→
h for individual heads h (i.e., the target words). LSA exploits the

linear transformation called Singular Value Decomposition (SVD) and produces
an approximation of the original matrix M , capturing (semantic) dependencies
between context vectors.

In the argument classification task, the similarity between two argument
heads h1 and h2 observed in FrameNet can be computed over

−→
h1 and

−→
h2. The



model for a given frame element FEk is built around the semantic heads h
observed in the role FEk in the training set: they form a set denoted by HFEk

.
These LSA vectors

−→
h express the individual annotated examples as they are

immerse in the LSA space acquired from the unlabeled texts. Moreover, given
FEk, a model for each individual syntactic relation r (i.e. that links h labeled
as FEk to their corresponding predicates) is a partition of the set HFEk

called
HFEk

r , i.e. the subset of HFEk

produced by examples of the relation r (e.g.
Subj).

As the LSA vectors
−→
h are available for the semantic heads h, a vector rep-

resentation
−−→
FEk for the role FEk can be obtained from the annotated data.

However, one single vector is a too simplistic representation given the rich na-
ture of semantic roles FEk. In order to better represent FEk, multiple regions in
the semantic space are used. They are obtained by a clustering process applied
to the set HFEk

r according to the Quality Threshold (QT) algorithm [5].
For a frame F , clusters define a geometric model of every frame elements

FEk: it consists of centroids −→c with c ⊆ HFEk

r . Each c represents FEk through
a set of similar heads, as role fillers observed in FrameNet. A sentence s can be
seen as a sequence of role-relation pairs: s = {(r1, h1), ..., (rn, hn)} where the
heads hi are in the syntactic relation ri with the underlying lexical unit of F .

For every head h in s, the vector
−→
h can be then used to estimate its similar-

ity with the different candidate roles FEk. Given the syntactic relation r, the
clusters c ∈ CFEk

r whose centroid vector c is closer to h are selected.
In some cases information about the head h is not available from the unla-

beled corpus or no example of relation r for the role FEk is available from the
annotated corpus. Often the incoming head h or the relation r may be unavail-
able:

1. If the head h has never been met in the unlabeled corpus or the high gram-
matical ambiguity of the sentence does not allow to locate it reliably, the
distributional model should be backed off to a purely syntactic model, that
is prob(FEk|r)

2. If the relation r can not be properly located in s, h is also unknown: the
prior probability of individual arguments, i.e. prob(FEk), is here employed.

Both prob(FEk|r) and prob(FEk) can be estimated from the training set and
smoothing can be also applied2. A more robust argument preference function for
all arguments (ri, hi) ∈ s of the frame F is thus given by:

prob(FEk|ri, hi) = λ1prob(FEk|ri, hi) + λ2prob(FEk|ri) + λ3prob(FEk) (1)

where weights λ1, λ2, λ3 can be heuristically assigned or estimated from the
training set3. The resulting model is called Backoff model : although simply based
on a single feature (i.e. the syntactic relation r), it accounts for information at
different reliability degrees.
2 Lindstone smoothing was applied with δ = 1.
3 In each test discussed hereafter, λ1, λ2, λ3 were assigned to .9,.09 and .01, in order

to impose a strict priority to the model contributions.



4 Join Re-ranking

Eq. 1 defines roles preferences local to individual arguments (ri, hi). However,
an argument frame is a joint structure, with strong dependencies between argu-
ments. We thus propose to model the re-ranking phase (RR) as a HMM sequence
labeling task. It defines a stochastic inference over multiple (locally justified) al-
ternative sequences through a Hidden Markov Model (HMM). It infers the best
sequence FE(k1,...,kn) over all the possible hidden state sequences (i.e. made
by the target FEki) given the observable emissions, i.e. the arguments (ri, hi).
Viterbi inference is applied to build the best (role) interpretation for the input
sentence.

5 Experimental Evaluation and Conclusion

The dataset provided by the Flait team is composed by 1255 annotated sen-
tences for the training set and 318 for the test one. We use 5-fold cross valida-
tion to assess the model parameters. For the Boundary Classification subtask
we make use only the annotated dataset provided by the organization team.
In the Argument Classification task, instead, an external unannotated corpus,
the ItWaC [1], is used to compute the LSA space. The ItWaC corpus is com-
posed by approximately 2 billion word collection of written Italian from the web,
from an unknown variety of genres. The entire ItWaC corpus has been parsed
and the dependency graphs derived from individual sentences provided the ba-
sic observable contexts: every co-occurrence is thus syntactically justified by a
dependency arc. The most frequent 20,000 basic features, i.e. (syntactic rela-
tion,lemma) pairs, have been used to build the matrix M , vector components
corresponding to point-wise mutual information scores. Finally, the final space
is obtained by applying the SVD reduction over M , with a dimensionality cut
of l = 250. The proposed SRL tool participates to the second and third test
run. In the second test run the boundary recognition is evaluated. The test set
is provided with explicit information about the correct frame corresponding to
the marked lexical unit. The resulting boundary detection accuracy achieves the
state-of-the-art in the token based evaluation and is the second best result in the
perfect match evaluation. As previously discussed, this is mainly due to errors
in the dependency parsing. The argument classification accuracy in the second
run is calculated over the boundaries tagged by the tool, performing the full
SRL chain. In this sub-task our model achieves the second best results in the
competition. Misclassified arguments are caused by the not availability of some
heads in the distributional space. The backoff model in some cases is not able to
find the correct argument due the estimation over a small size training dataset
provided for some frames.

In the third run the test are released with the explicit information about the
marked boundaries of individual arguments. Here the AC task is required. In this
run our tool achieves interesting results achieving a F1 of 65.82% in the perfect
matching. Preliminary error analysis confirms the previous consideration about



Table 1. Results of the second and third runs : Boundary Detection (BD) and Argu-
ment Classification (AC)

Task Precision(%) Recall (%) F1 (%)
Token based Token based Token based
Precision(%) Recall(%) F1(%)

Second run

BD 72.27% 63.74% 67.74% 83.19% 85.02% 84.10%
AC 51.82% 45.71% 48.58% 61.59% 62.94% 62.26%

Third run

AC 66.85% 64.82% 65.82% 71.63% 71.28% 71.45%

the AC errors. A more completed analysis will be carried out when dataset will
be available.

The overall SRL process is, on a standard architecture, performed at about
6.74 sentences per second, i.e. 6.21 sentence per second. For more details we
refer the reader to [3] in which same SRL tool is evaluated over the FrameNet
(English) dataset.
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