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Abstract. In this paper two systems participating to the Evalitame Label-

ing over ltalian Textehallenge are presented. The first one, i.e. the SVM-SPTK
system, implements the Smoothed Partial Tree Kernel thdele@emantic roles

by implicitly combining syntactic and lexical informatiaf annotated examples.
The second one, i.e. the SVM-HMM system, realizes a flexipfg@ach based

on the Markovian formulation of the SVM learning algorithin.the challenge,
the SVM-SPTK system obtains state-of-the-art resultsrimoat all tasks. Perfor-
mances of the SVM-HMM system are interesting too, i.e. tleosd best scores

in the Frame Prediction and Argument Classification taségeeially consider-
ing it does not rely on a full syntactic parsing.
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1 Introductions

Language learning systems usually generalize linguidigeovations into statistical
models of higher level semantic tasks, such as SemanticlRdleling (SRL). Lexical
or grammatical aspects of training data are the basic fesfor modeling the different
inferences, then generalized into predictive patternggasimg the final induced model.
In SRL, the role of grammatical features has been outlinecesihe seminal work by
[10], where symbolic expressions derived from the parsestrkenote the position and
the relationship between a predicate and its argumentshagdire used as features.
As discussed in [5, 8, 13], syntactic information of anneta¢xamples can be ef-
fectively generalized in SRL through the adoption of treenkébased learning ([4]),
without the need of manual feature engineering: as treeckemodel similarity be-
tween two training examples as a function of their shareslft@gments, discriminative
informations are automatically selected by the learning@dhm, e.g., Support Vec-
tor Machines (SVMs). However, when the availability of tiaig data is limited, the
information derived from structural patterns cannot bédicehnt to discriminate exam-
ples. According to the Frame Semantics [3], two phrases‘like man said . .."and
“The mail said . ..” both evoke the UDGMENT_COMMUNICATION framé" but the two
logical subjects represent two different rolegnrepresents a human being, then asso-
ciated to the @ MMUNICATOR role, whilemail is a media, therefore associated to the

! The frame is here evoked by the lexical usgid



MEAN role. Lexical information should be captured as it models finained context
dependent aspects of the input data. One main limitatioreefkernels is that a hard
matching among tree node labels is usually applied. If & teaxiample containman
while a test case contaigkild, they are considered different without contributing to the
overall similarity estimation. To overcome such issue$8]rthe definition of a seman-
tically Smoothed Partial Tree Kerné6PTK) has been provided to augment tree kernel
formulation with node similarity, e.g. between the lexinatles. The idea is to provide a
similarity score among tree nodes depending on the sensamilarity among the node
labels, e.gmanandchild. SPTK can thus automatically provide the learning algamith
with a huge set of generalized structural patterns by sirapplying it to the structural
representation of the target training instances. A meduiisgnilarity measure is thus
crucial, as the lack of proper lexical generalization igoftlaimed as the main respon-
sible for significant performance drops in out-of-domainL$R2]. As the development
of large scale lexical KBs is very expensive, corpus-drigeethods are traditionally
used to acquire meaning generalizations in an unsuperfasain (e.g. [14]) through
the analysis of distributions of word occurrences in teltdine with previous works,
(e.g. [7]) we extends a supervised approach through thetiatayf vector based mod-
els of lexical meaning: a large-scale corpus is statidfiGaialyzed and a geometrical
space (the Word Space discussed in [16]) is defined. Heresvemedmodeled as vectors
whose dimensions reflect the words co-occurrence statigtier texts. The similarity
(or distance) among vectors corresponds to a notion of séer&milarity among the
corresponding words. This approach has been implementad 8VM-SPTK system
and his performances have been evaluated in the Evalita P@tie Labeling over
Italian Texts(FLalT) challenge.

However, there is no free lunch in the adoption of grammbtésgures in complex
NLP tasks. Methods for extracting grammatical featuremfparse trees are strongly
biased by the parsing quality. In [15] experiments over gale trees are reported with
an accuracy (93%) significantly higher than the ones deliyagsing automatically de-
rived trees (i.e. 79%). Moreover, in [12] the adoption of Hyatactic parser has been
shown to restrict the correct treatment of FrameNet rolaemty the 82% of them, i.e.
the only ones that are grammatically recognized. A radiddifferent approach is here
pursued as a possible solution to the above problems. Waikkng accuracy highly
varies across corpora, the adoption of shallower featergs POS n-grams) increases
robustness, applicability and minimizes overfitting. Ihtfte SRL task is modeled as a
sequential tagging problem through the adoption of shafjemmmatical features that
avoid the use of a full parser. The learning framework is jated by theSV Mhmm
formulation discussed in [1], that extends classical SVMéelarning a discriminative
model isomorphic to &-order Hidden Markov Model through the Structural SVM for-
mulation [17]. Each word is then modeled as a set of linedufea that express lexical
information as well as syntactic information surrogated®)Sn-grams. Another sys-
tem has been thus developed for the challenge, i.6&s¥HMd-HMM based system, that
aims to increase the applicability of SRL tagging withoutsrequirements in terms of
training data. In the rest of this work, Section 2 describath ISVM-SPTK and SVM-
HMM systems. Section 3 reports results achieved inRhalT challenge. Finally, in
Section 4 conclusions are derived.



2 Systems Description

In this section two different systems of SRL, implementiiféedent structured kernel-
based Support Vector Machine (SVM) learning algorithmspaesented.

2.1 The SVM-SPTK system

The SVM-SPTK system is based on the semantically SmootheadParee Kernel
(SPTK) described in [8]. It extends the Tree Kernel formolatwhich measures the
structural similarity of syntactic parse trees, by accounon the lexical information
too. This is estimated according to a geometrical perspectis discussed in [16], a
large-scale corpus is statistically analyzed and a gedaraéiWord Space is acquired.
As proposed in [8], examples are modeled according the Getioah Relation Cen-
tered Tree (GRCT) representation from the original depeogl@arse structures, i.e.
no manual feature engineering is needed.

TheFrame Prediction(FP) task is modeled as a classification problem. Every lex-
ical unit{u found in a sentence determines an example, indicated as the pairs).
Each example is modeled through the GRCT representatign.ef no manual feature
engineering is applied. The node correspondingtoe ia enriched with the special to-
kenLU to distinguish sentences containing differémé. A model for each frame, i.e.
the target class, is acquired and a One-VS-All classifinaghema is adopted.

For theBoundary DetectioifBD) task, each node in the dependency parse tree is
a candidate node covering a word span evoking a role (i.eam&iElementfe) and
the classifier discriminates nodes perfectly covering aipege argument. The frame
information provided at the FP step is ignored, while modeisdifferent POS, i.e.
verbs {), nouns N) and adjectivesADJ), are acquired. This separation is needed as
predicates in different POS classes may have very diffeyaritictic behaviors. In each
example the target node and the covered ones are then ehwithehe ARGlabel and
all nodes that do not coverfa& nor thelu are pruned out. It is useful as the complexity
of parse trees grows exponentially with the sentence lengtls compromising the
generalization capability of the SVM resulting model. Ire thirgument Classification
(AC) task, only nodes actually coveringfa are preserved. Examples are divided by
frame and a One-VS-All schema is applied, i.e. and a modeldohfe is acquired.

2.2 The SVM-HMM system

The SVM-HMM implements an agile system that adopts onlylstiadirammatical fea-
tures ignoring the full syntactic information of a senterithe Frame PredictionFP)
task is modeled as a classification problem where each eramgiven by thelu, s)
pair and the fram¢ indicates the target class. Each instance is modeled agarsah-
ually engineered contextual features: the lexical andasytitt contexts are captured by
the m words and the POS-grams around théu. The symbolLU is used to better
characterize the target predicate within amgram. The multi-classification schema
described in [11] is applied, thus defining a single clagdifiat implicitly compares all
solution and select the most likely one.



For theBoundary DetectiofiBD) and theArgument Classificatio(AC) tasks, the
approach defined in [6] is adopted. The labeling problem isleterd as a sequential
tagging task thus extending a SVM by learning a discrimugatnodel isomorphic to a
k-order Hidden Markov Model. With respect to BD, each tokepresents the begin-
ning (B), the inside (I) or outside (O) of an argument or it d@nsimply external (X)
to every argument. The BD task is thus a sequence labelirgppsdhat determines the
individual (correct BIO) class for each token, €:ghe/B manOsaidLU...”. Models
for different/u POS are acquired as for the previous system.

The AC task is realized in a similar fashion, i.e. once the Bi@ation for each
argument is available, each token inside a boundary isifiassvith respect to the
corresponding role. Each frame is characterized by a stlgsifier as th&'V M/m™
formulation implicitly realizes a multi-classification agell as a re-ranking schema.
The role label most frequently assigned to the inner memifeadoundary is retained
as the unique role. For both BD and AC each instance, i.e.wadtts, is modeled as a
set of manually engineered features as in [6] and a linearekés applied to compare
feature vectors in all the three tasks. The cutting-plaamiag algorithm allows to train
our linear classifiers very efficiently as described in [11].

3 Results

In this section, results achieved in the Evalita 261&aIT challenge are reported. Both
systems are trained using 1255 annotated sentences pit@sdiee training set. Param-
eter tuning has been carried out according a 5-fold crosdatan schema. Syntactic
trees of the 318 test sentences have been manually checkdts &ANL parser [2]
diverged in several sentences, providing inconsistentasyic labeling. However the
training sentences were not checked to measure the systematmess when trained
over real but noisy data. The lexical generalization is ed by a word space acquired
from the Italian Wikipedia corpdsHere lemmatized and POS tagged words that occur
in the corpus more than 200 times have been selected, thusimgddata-sparseness.
Each target wordw corresponds to a row in the adjacency matfvixi.e. a pointin the
resulting space. Each column bf represents a word in the corpus and each item deter-
mines the point-wise mutual informatioprfi) score that estimates the number of times
this word co-occurs witliw in a window of size+3. The most frequent 20,000 items
are thus selected. A dimensionality space reduction bas&ihgular Value Decompo-
sition is then applied as described in [9] to reduce the sdamensionality toN=250.
The similarity between words is thus expressed as the cesiniéarity between the
corresponding vectors in such reduced space.

Frame Prediction (FP): In the FP task, the SVM-SPTK system correctly determined
the evoked frame for the 80.82% of test sentences, thus\achibest results with
respect to this task. The SVM-HMM achieved a close accuraoyes i.e. 78.62%. It
seems that the syntactic information of the sentence waslisotiminative for this
particular task and the shallow grammatical patterns sgmea valuable information.

2 The corpus is developed by the WaCky community and it is akilin the Wacky project
web page at http://medialab.di.unipi.it/Project/QA/@RNLL.bz2



Table 1. Evalita 2011 - Boundary Detection Results

System

Argument-Based

Token-Based

P R F1

P R F1

First Run

SVM-SPTK
SVM-HMM

66.67% 72.50% 69.469
50.70% 51.43% 51.06

181.99% 84.34% 83.159
%68.02% 77.18% 72.31

Second Ru

SVM-SPTK

'5VM-HMM

49.91% 50.36% 50.13

66.67%72.50% 69.46%

81.99% 84.34% 83.15
%68.14% 76.69% 72.16

oY O O

Boundary Detection (BD): In Table 1 results obtained in the BD task are reported. In
the First challenge run, gold standard frame informatiamisprovided and it must be
automatically induced. On the contrary this informatiopiisvided by the organizers
in the Second challenge run. In both cases, SVM-SPTK systdiees state-of-the-
art results for the perfect detection of semantic rolesthe SPTK based classifier can
effectively exploit the combination of syntactic inforrat and lexical generalization
to acquire a robust model of semantic roles. In the tokendbBEemeasure, a different
system achieved better (even if very close) results, i.eapproach tends to neglect
some words in the role spans. This phenomenon need to bdigatesl when gold-
standard results will be provided by organizers. Accordinthe perfect role detection
measure, the SVM-HMM system shows an important performenme of nearly 19%
in terms of F1. Even if this drop is reduced according to theitobased measure (i.e.
nearly 11% of F1), the adoption of shallow grammatical infation seems not to be
the best solution in this such training condition, i.e. ohBb5 training sentences. Here
different arguments are not retrieved at all. The sequeateart-of-speech patterns
represent a sparse source of information that penalizeesogéting system recall.
Argument Classification (AC): In Table 2 results for the AC task are reported. Notice
that in the Third challenge run, also gold-standard argurbeandaries are provided.
Again, the SVM-SPTK system achieves state-of-the-artlteéu all challenge runs,
confirming how the combination of syntactic and lexical imh@tion provides a robust
model of semantic roles. When gold standard boundariesraseded, i.e. the Third
run, the SVM-HMM system achieves the second best resultserchallenge. As dis-
cussed in [7], this task strictly depends on lexical infotimraand these results confirm
that a shallower grammatical information can properly galiee the syntactic behav-
ior of different roles. Notice that SVM-HMM produces the rbkely labeling for the
entire sentence, so that the implicit re-ranking furthertdbutes to the system robust-
ness. Finally, higher results in the token based measuoss thtat both systems better
classify semantic roles with larger spans, i.e. with morgagtical and lexical material.

4 Conclusion

In this work two different statistical learning methods tbe FrameNet based SRL
are investigated and implemented by two SRL systems thétipated to the Evalita
FLalT challenge. The SVM-SPTK system is based on the Smoothe@dlPade Ker-
nel, a convolution kernel that models semantic roles by ity combining syntactic
and lexical information of annotated examples. This sysaehieves the state-of-the-
art in almost all challenge tasks. The SVM-HMM system repnés a very flexible



Table 2. Evalita 2011 - Argument Classification Results

System

Argument-Based

Token-Based

P R F1

P R F1

First Run

SVM-SPTK
SVM-HMM

48.44% 52.68% 50.479
33.10% 33.57% 33.33

062.58% 64.38% 63.479
46.77% 53.06% 49.72

Second Ru

SVM-SPTK
'5VM-HMM

37.52% 37.86% 37.69

51.23%55.71% 53.38%

69.01% 70.99% 69.999
64.63% 61.48% 57.86

Third Run

SVM-SPTK

SVM-HMM

66.67% 65.36% 66.01

70.36%70.36% 70.36%

78.35%78.35% 78.35%
Vi7.71% 77.46% 77.59

o

o

o

approach for SRL based on the Markovian formulation of thaural SVM learning
algorithm. Results achieved by this system are lower wiipeet to the SVM-SPTK,
but in line with the other systems in most runs. It is a strdmiward result, if consid-
ering that SVM-HMM does not rely on a full syntactic parsirfgsentences.
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