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Abstract. In this paper two systems participating to the EvalitaFrame Label-
ing over Italian Textschallenge are presented. The first one, i.e. the SVM-SPTK
system, implements the Smoothed Partial Tree Kernel that models semantic roles
by implicitly combining syntactic and lexical informationof annotated examples.
The second one, i.e. the SVM-HMM system, realizes a flexible approach based
on the Markovian formulation of the SVM learning algorithm.In the challenge,
the SVM-SPTK system obtains state-of-the-art results in almost all tasks. Perfor-
mances of the SVM-HMM system are interesting too, i.e. the second best scores
in the Frame Prediction and Argument Classification tasks, especially consider-
ing it does not rely on a full syntactic parsing.
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1 Introductions

Language learning systems usually generalize linguistic observations into statistical
models of higher level semantic tasks, such as Semantic RoleLabeling (SRL). Lexical
or grammatical aspects of training data are the basic features for modeling the different
inferences, then generalized into predictive patterns composing the final induced model.
In SRL, the role of grammatical features has been outlined since the seminal work by
[10], where symbolic expressions derived from the parse trees denote the position and
the relationship between a predicate and its arguments, andthey are used as features.

As discussed in [5, 8, 13], syntactic information of annotated examples can be ef-
fectively generalized in SRL through the adoption of tree kernel based learning ([4]),
without the need of manual feature engineering: as tree kernels model similarity be-
tween two training examples as a function of their shared tree fragments, discriminative
informations are automatically selected by the learning algorithm, e.g., Support Vec-
tor Machines (SVMs). However, when the availability of training data is limited, the
information derived from structural patterns cannot be sufficient to discriminate exam-
ples. According to the Frame Semantics [3], two phrases like“The man said . . . ”and
“The mail said . . . ” both evoke the JUDGMENT COMMUNICATION frame1 but the two
logical subjects represent two different roles:manrepresents a human being, then asso-
ciated to the COMMUNICATOR role, whilemail is a media, therefore associated to the

1 The frame is here evoked by the lexical unitsaid



MEAN role. Lexical information should be captured as it models fine grained context
dependent aspects of the input data. One main limitation of tree kernels is that a hard
matching among tree node labels is usually applied. If a train example containsman
while a test case containschild, they are considered different without contributing to the
overall similarity estimation. To overcome such issues, in[8] the definition of a seman-
tically Smoothed Partial Tree Kernel(SPTK) has been provided to augment tree kernel
formulation with node similarity, e.g. between the lexicalnodes. The idea is to provide a
similarity score among tree nodes depending on the semanticsimilarity among the node
labels, e.g.manandchild. SPTK can thus automatically provide the learning algorithm,
with a huge set of generalized structural patterns by simplyapplying it to the structural
representation of the target training instances. A meaningful similarity measure is thus
crucial, as the lack of proper lexical generalization is often claimed as the main respon-
sible for significant performance drops in out-of-domain SRL [12]. As the development
of large scale lexical KBs is very expensive, corpus-drivenmethods are traditionally
used to acquire meaning generalizations in an unsupervisedfashion (e.g. [14]) through
the analysis of distributions of word occurrences in texts.In line with previous works,
(e.g. [7]) we extends a supervised approach through the adoption of vector based mod-
els of lexical meaning: a large-scale corpus is statistically analyzed and a geometrical
space (the Word Space discussed in [16]) is defined. Here words are modeled as vectors
whose dimensions reflect the words co-occurrence statistics over texts. The similarity
(or distance) among vectors corresponds to a notion of semantic similarity among the
corresponding words. This approach has been implemented intheSVM-SPTK system
and his performances have been evaluated in the Evalita 2011Frame Labeling over
Italian Texts(FLaIT) challenge.

However, there is no free lunch in the adoption of grammatical features in complex
NLP tasks. Methods for extracting grammatical features from parse trees are strongly
biased by the parsing quality. In [15] experiments over goldparse trees are reported with
an accuracy (93%) significantly higher than the ones derivedby using automatically de-
rived trees (i.e. 79%). Moreover, in [12] the adoption of thesyntactic parser has been
shown to restrict the correct treatment of FrameNet roles toonly the 82% of them, i.e.
the only ones that are grammatically recognized. A radically different approach is here
pursued as a possible solution to the above problems. While parsing accuracy highly
varies across corpora, the adoption of shallower features (e.g. POS n-grams) increases
robustness, applicability and minimizes overfitting. In [6] the SRL task is modeled as a
sequential tagging problem through the adoption of shallowgrammatical features that
avoid the use of a full parser. The learning framework is provided by theSVMhmm

formulation discussed in [1], that extends classical SVMs by learning a discriminative
model isomorphic to ak-order Hidden Markov Model through the Structural SVM for-
mulation [17]. Each word is then modeled as a set of linear features that express lexical
information as well as syntactic information surrogated byPOSn-grams. Another sys-
tem has been thus developed for the challenge, i.e. theSVM-HMM based system, that
aims to increase the applicability of SRL tagging without strict requirements in terms of
training data. In the rest of this work, Section 2 describes both SVM-SPTK and SVM-
HMM systems. Section 3 reports results achieved in theFLaIT challenge. Finally, in
Section 4 conclusions are derived.



2 Systems Description

In this section two different systems of SRL, implementing different structured kernel-
based Support Vector Machine (SVM) learning algorithms arepresented.

2.1 The SVM-SPTK system

The SVM-SPTK system is based on the semantically Smoothed Partial Tree Kernel
(SPTK) described in [8]. It extends the Tree Kernel formulation, which measures the
structural similarity of syntactic parse trees, by accounting on the lexical information
too. This is estimated according to a geometrical perspective: as discussed in [16], a
large-scale corpus is statistically analyzed and a geometrical Word Space is acquired.
As proposed in [8], examples are modeled according the Grammatical Relation Cen-
tered Tree (GRCT) representation from the original dependency parse structures, i.e.
no manual feature engineering is needed.

TheFrame Prediction(FP) task is modeled as a classification problem. Every lex-
ical unit lu found in a sentences determines an example, indicated as the pair〈lu, s〉.
Each example is modeled through the GRCT representation ofs, i.e. no manual feature
engineering is applied. The node corresponding to alu is enriched with the special to-
kenLU to distinguish sentences containing differentlus. A model for each frame, i.e.
the target class, is acquired and a One-VS-All classification schema is adopted.

For theBoundary Detection(BD) task, each node in the dependency parse tree is
a candidate node covering a word span evoking a role (i.e. a Frame Element,fe) and
the classifier discriminates nodes perfectly covering a predicate argument. The frame
information provided at the FP step is ignored, while modelsfor different POS, i.e.
verbs (V), nouns (N) and adjectives (ADJ), are acquired. This separation is needed as
predicates in different POS classes may have very differentsyntactic behaviors. In each
example the target node and the covered ones are then enriched with theARG label and
all nodes that do not cover afe nor thelu are pruned out. It is useful as the complexity
of parse trees grows exponentially with the sentence length, thus compromising the
generalization capability of the SVM resulting model. In the Argument Classification
(AC) task, only nodes actually covering afe are preserved. Examples are divided by
frame and a One-VS-All schema is applied, i.e. and a model foreachfe is acquired.

2.2 The SVM-HMM system

The SVM-HMM implements an agile system that adopts only shallow grammatical fea-
tures ignoring the full syntactic information of a sentence. TheFrame Prediction(FP)
task is modeled as a classification problem where each example is given by the〈lu, s〉
pair and the framef indicates the target class. Each instance is modeled as a setof man-
ually engineered contextual features: the lexical and syntactic contexts are captured by
the m words and the POSn-grams around thelu. The symbolLU is used to better
characterize the target predicate within anyn-gram. The multi-classification schema
described in [11] is applied, thus defining a single classifier that implicitly compares all
solution and select the most likely one.



For theBoundary Detection(BD) and theArgument Classification(AC) tasks, the
approach defined in [6] is adopted. The labeling problem is modeled as a sequential
tagging task thus extending a SVM by learning a discriminative model isomorphic to a
k-order Hidden Markov Model. With respect to BD, each token represents the begin-
ning (B), the inside (I) or outside (O) of an argument or it canbe simply external (X)
to every argument. The BD task is thus a sequence labeling process that determines the
individual (correct BIO) class for each token, e.g.“The/B man/O said/LU . . . ” . Models
for differentlu POS are acquired as for the previous system.

The AC task is realized in a similar fashion, i.e. once the BIOnotation for each
argument is available, each token inside a boundary is classified with respect to the
corresponding role. Each frame is characterized by a singleclassifier as theSVMhmm

formulation implicitly realizes a multi-classification aswell as a re-ranking schema.
The role label most frequently assigned to the inner membersof a boundary is retained
as the unique role. For both BD and AC each instance, i.e. eachwords, is modeled as a
set of manually engineered features as in [6] and a linear kernel is applied to compare
feature vectors in all the three tasks. The cutting-plane learning algorithm allows to train
our linear classifiers very efficiently as described in [11].

3 Results

In this section, results achieved in the Evalita 2011FLaIT challenge are reported. Both
systems are trained using 1255 annotated sentences provided as the training set. Param-
eter tuning has been carried out according a 5-fold cross validation schema. Syntactic
trees of the 318 test sentences have been manually checked, as the TANL parser [2]
diverged in several sentences, providing inconsistent syntactic labeling. However the
training sentences were not checked to measure the system robustness when trained
over real but noisy data. The lexical generalization is provided by a word space acquired
from the Italian Wikipedia corpus2. Here lemmatized and POS tagged words that occur
in the corpus more than 200 times have been selected, thus reducing data-sparseness.
Each target wordtw corresponds to a row in the adjacency matrixM , i.e. a point in the
resulting space. Each column ofM represents a word in the corpus and each item deter-
mines the point-wise mutual information (pmi) score that estimates the number of times
this word co-occurs withtw in a window of size±3. The most frequent 20,000 items
are thus selected. A dimensionality space reduction based on Singular Value Decompo-
sition is then applied as described in [9] to reduce the spacedimensionality toN=250.
The similarity between words is thus expressed as the cosinesimilarity between the
corresponding vectors in such reduced space.
Frame Prediction (FP): In the FP task, the SVM-SPTK system correctly determined
the evoked frame for the 80.82% of test sentences, thus achieving best results with
respect to this task. The SVM-HMM achieved a close accuracy score, i.e. 78.62%. It
seems that the syntactic information of the sentence was notdiscriminative for this
particular task and the shallow grammatical patterns represent a valuable information.

2 The corpus is developed by the WaCky community and it is available in the Wacky project
web page at http://medialab.di.unipi.it/Project/QA/wikiCoNLL.bz2



Table 1.Evalita 2011 - Boundary Detection Results

System
Argument-Based Token-Based

P R F1 P R F1

First Run
SVM-SPTK 66.67% 72.50% 69.46%81.99% 84.34% 83.15%
SVM-HMM 50.70% 51.43% 51.06%68.02% 77.18% 72.31%

Second Run
SVM-SPTK 66.67%72.50% 69.46%81.99% 84.34% 83.15%
SVM-HMM 49.91% 50.36% 50.13%68.14% 76.69% 72.16%

Boundary Detection (BD): In Table 1 results obtained in the BD task are reported. In
the First challenge run, gold standard frame information isnot provided and it must be
automatically induced. On the contrary this information isprovided by the organizers
in the Second challenge run. In both cases, SVM-SPTK system achieves state-of-the-
art results for the perfect detection of semantic roles, i.e. the SPTK based classifier can
effectively exploit the combination of syntactic information and lexical generalization
to acquire a robust model of semantic roles. In the token based BD measure, a different
system achieved better (even if very close) results, i.e. our approach tends to neglect
some words in the role spans. This phenomenon need to be investigated when gold-
standard results will be provided by organizers. Accordingto the perfect role detection
measure, the SVM-HMM system shows an important performancedrop of nearly 19%
in terms of F1. Even if this drop is reduced according to the token based measure (i.e.
nearly 11% of F1), the adoption of shallow grammatical information seems not to be
the best solution in this such training condition, i.e. only1255 training sentences. Here
different arguments are not retrieved at all. The sequencesof part-of-speech patterns
represent a sparse source of information that penalizes theresulting system recall.
Argument Classification (AC): In Table 2 results for the AC task are reported. Notice
that in the Third challenge run, also gold-standard argument boundaries are provided.
Again, the SVM-SPTK system achieves state-of-the-art results in all challenge runs,
confirming how the combination of syntactic and lexical information provides a robust
model of semantic roles. When gold standard boundaries are provided, i.e. the Third
run, the SVM-HMM system achieves the second best results in the challenge. As dis-
cussed in [7], this task strictly depends on lexical information and these results confirm
that a shallower grammatical information can properly generalize the syntactic behav-
ior of different roles. Notice that SVM-HMM produces the most likely labeling for the
entire sentence, so that the implicit re-ranking further contributes to the system robust-
ness. Finally, higher results in the token based measures show that both systems better
classify semantic roles with larger spans, i.e. with more syntactical and lexical material.

4 Conclusion

In this work two different statistical learning methods forthe FrameNet based SRL
are investigated and implemented by two SRL systems that participated to the Evalita
FLaIT challenge. The SVM-SPTK system is based on the Smoothed Partial Tree Ker-
nel, a convolution kernel that models semantic roles by implicitly combining syntactic
and lexical information of annotated examples. This systemachieves the state-of-the-
art in almost all challenge tasks. The SVM-HMM system represents a very flexible



Table 2.Evalita 2011 - Argument Classification Results

System
Argument-Based Token-Based

P R F1 P R F1

First Run
SVM-SPTK 48.44% 52.68% 50.47%62.58% 64.38% 63.47%
SVM-HMM 33.10% 33.57% 33.33%46.77% 53.06% 49.72%

Second Run
SVM-SPTK 51.23%55.71% 53.38%69.01% 70.99% 69.99%
SVM-HMM 37.52% 37.86% 37.69%54.63% 61.48% 57.86%

Third Run
SVM-SPTK 70.36%70.36% 70.36%78.35%78.35% 78.35%
SVM-HMM 66.67% 65.36% 66.01%77.71% 77.46% 77.59%

approach for SRL based on the Markovian formulation of the Structural SVM learning
algorithm. Results achieved by this system are lower with respect to the SVM-SPTK,
but in line with the other systems in most runs. It is a straightforward result, if consid-
ering that SVM-HMM does not rely on a full syntactic parsing of sentences.
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