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Abstract. DeSR is a statistical transition-based dependency parser that learns 

from a training corpus which action to take to build the parse tree while 

scanning a sentence. DeSR can be configured to use different feature models 

and classifier types. We tuned the parser for the Evalita 2011 corpora by 

performing several experiments of feature selection and also by adding some 

new features. The submitted run used DeSR with two additional techniques: (1) 

reverse revision parsing, which addresses the problem of long distance 

dependencies, by extracting hints from the output of a first parser as input to a 

second parser running in the opposite direction; (2) parser combination, which 

consists in combining the outputs of different configurations of the parser. The 

submission achieved second best accuracy. An analysis of the errors shows that 

the accuracy is quite high on half of the test set and lower on the second half 

which belongs to a different domain. 

Keywords: Dependency parser, shift-reduce parser, stacked parser, parser 

combination. 

1 Description of the System 

DeSR (Dependency Shift Reduce) is a transition-based statistical parser [7] [9] which 

builds dependency trees while scanning a sentence and applying at each step a proper 

parsing action selected through a classifier based on a set of representative features of 

the current parse state [1]. Parsing is performed bottom-up in a Shift/Reduce style [1], 

except that the parsing rules are special and allow parsing to be performed 

deterministically in a single pass [2]. 

The state of the parser is represented by a triple S, I, A, where I is a sequence of 

tokens still remaining in the input. Initially I contains the sequence of tokens for the 

sentence being parsed: each token contains the word wi as well as a set of word 

features pi, consisting typically of the POS tag, the word lemma and possibly 

morphological features. S is the stack containing analyzed tokens; A is a set of labeled 

dependencies constructed so far. At each step, the parser selects a parsing rule to 

apply and modifies its state accordingly. 

It is possible to specify, through a configuration file, the set of features to use (e.g. 

POS tag, word lemma, morphological features) and the classification algorithm (e.g. 



Multi-Layer Perceptron, Support Vector Machine, Maximum Entropy). The parser 

can use beam search in conjunction with those classifiers that provide a probability 

distribution for the predictions, i.e. Maximum Entropy and Perceptron. Moreover the 

parser can be configured to run either in left-to-right or right-to-left word order. 

A quite effective use of DeSR is the Reverse Revision parser [4], a stacked parser 

[3] which first runs in one direction, and then extracts hints from its output to feed 

another parser running in the opposite direction. A Reverse Revision parser was used 

successfully in several parser competitions, including Evalita 2009 [5] and Icon 2010 

[6]. 

All these options allow creating a number of different parser variants, all based on 

the same basic algorithm. This allows selecting the most effective variants and then a 

further improvement can be achieved by the technique of parser combination [4]. For 

parser combination we use a greedy algorithm, which hence preserves the linear 

complexity of the individual parsers and often outperforms other more complex 

algorithms [8]. In the Evalita 2009 experiments, the algorithm was able to reduce the 

error rate up to 8% in the pilot task on dependency parsing. 

For the Evalita 2011 competition, we used a configuration similar to that for 

Evalita 2009 and performed a number of experiments to improve feature selection. 

2 Experiments 

We merged the six corpora of TUT in a single initial corpus. We produced from the 

initial corpus a new corpus by rewriting the morphological information in the FEATS 

field in a standard format and accommodating other information in the same field in 

the fine-grained PoS column and two new columns: one column EXTRA that 

contains additional morphological information and one column SEM with semantic 

information. The format file of DeSR was modified to include these two extra 

columns in order to exploit this additional information. We will call base corpus the 

corpus with the two new columns.  

During development the base corpus was divided randomly into: a training set 

(93% of sentences) for model training and a development set (7%) for model testing.  

Starting from the configurations that gave the best results in the Evalita 2009 

Dependency Parsing main task, we performed a feature selection process by adding 

and deleting individual features, and verifying the improvements brought by each of 

them. For each set of features we tried as classifiers both Multi-Layer Perceptron 

(MLP) and Support Vector Machine (SVM). Moreover, for each set of features, both 

the normal parser and the stacked parser were run, in both directions.  

The feature selection process produced about 170 different models and as many 

parse results. This was possible since the parser is fast enough that training can take 

about 3 min. in a typical configuration on a Linux server with an Intel
®
 Xeon

®
 

2.53GHz CPU. The 25 best configurations were tested in combinations of 3 or 4, 

using the method described in [2]. The configurations of the four best parsers were 

chosen for the final run by training four parsers on the whole base corpus and 

combining their output. 



The four parsers used for the final run share a set of common features as reported 

in Table 1. 

Table 1. Common features of all parsers. 

Feature Value 

LEMMA 

POSTAG 

CPOSTAG 

FEATS 

DEPREL 

LexChildNonWord 

StackSize 

VerbCount 

PastActions 

-2 -1 0 1 2 3 prev(0) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

-2 -1 0 1 2 3 next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0) 

-1 0 1 

-1 0 1 

leftChild(-1) leftChild(0) rightChild(-1) 

true 

true 

true 

1 

All four parsers are stacked parsers, which use an additional set of common features 

for the second stage, as reported in Table 2. 

Table 2. Common features for reverse revision parsers. 

Feature Value 

PHLEMMA 

PDEP 

PHPOS 

-1 0 1 

-1 0 1 

-1 0 1 

 

The specific features used by the four parsers used for the final run are listed in Table 

3. Most differences lie in the fields EXTRA and SEM is because all the best parsers 

found with the feature selection process differed mainly in such fields, in fact, 

variations on the other features (with respect to the common configuration reported 

previously) led to a decay in performance. 

A further experiment was performed to assess the utility of features expressing 

morphological agreement between words, either in gender and number. The best 

configurations were tested by adding the feature MorphoAgreement. We considered 

two different ways to represent morphological agreement: 

 Adding features =N or =G to express the cases when the top and next token agree 

in number or gender respectively (neutral agrees with any other value) 

 Adding features !=N or !=G to express the cases when the top and next token do 

not agree  

The second alternative avoids that a missing feature would be considered as a 

disagreement. For example in “potuto essere vista”, “potuto” and “vista” are 

indirectly connected even though there is no gender agreement. In both cases also 

=NG!1 and =NG!2 is added if the top token disagrees either in gender or number with 

the second or third token on the input respectively. 



While the addition of MorphoAgreement features corrects some errors due to 

wrong agreement, it introduces errors in other cases. Overall the accuracy improves 

slightly in about half of the runs (with an average variation of 0.3%) but is slightly 

worse in the others, and hence the effectiveness of the feature remains questionable. 

The best score on the development set (LAS 87.78%) was achieved by the 

combination among parsers without MorphoAgreement, with a small margin with 

respect to the combination of parsers with the feature (LAS 87.70%). 

Table 3. Comparison between the four best parsers. 

Parser Type Classifier Features Stacked Parser Features 

1 Forward  

Revision 

MLP EXTRA -1 0 

SEM -1 0 1 

LexCutoff 0 

EXTRA -1 0 

SEM -1 0 1 

PLOC -1 0 1 

LexCutoff 0 

2 Reverse  

Revision 

MLP EXTRA -1 0 

SEM -2 -1 0 1 2 3 

LexCutoff 2 

EXTRA -1 0 

SEM -1 0 1 

PLOC -1 0 1 

LexCutoff 0 

3 Reverse  

Revision 

SVM EXTRA -1 0 

SEM -2 -1 0 1 2 3 

LexCutoff 2 

EXTRA -1 0 

SEM -1 0 1 

PLOC -1 0 1 

LexCutoff 0 

4 Forward  

Revision 

SVM EXTRA -1 0 1 

SEM -2 -1 0 1 2 3 

LexCutoff 2 

EXTRA -1 0 1 

SEM -2 -1 0 1 2 

PLOC 0 1  

PHDEP -1 0 1 

PHHLEMMA 0 1 

LexCutoff 2 

3 Results 

Table 4 reports the values of Labeled Attachment Score (LAS) and Unlabeled 

Attachment Score (UAS) achieved by the four individual parsers and by their 

combination on the development set. 

Table 4. Results of the four parser and their combination on the development set. 

Parser LAS on Dev Set UAS on Dev Set 

1 85.34 % 89.49 % 

2 86.67 % 90.55 % 

3 85.90 % 89.89 % 

4 85.05 % 88.92 % 

Combination 87.78 % 91.40 % 



We used this parser combination for our official submission which achieved the 

official scores reported in Table 5, compared with the scores of the best submission 

for this task. 

Table 5. Final result on the Evalita 2011 test set. 

Run LAS UAS 

EVALITA_11_PAR_DEP_UNIPI 89.88 93.73 

Best submission to Evalita 2011 91.23 96.16 

4 Discussion and Error Analysis 

The official test set consists of 150 sentences from the Civil Law domain and 150 

sentences from other domains. The parser achieves excellent accuracy on the first 

portion of the test set (92.85%), while the score drops significantly on the rest of the 

test set (86.61%), as shown in the following table. 

Table 6. Breakdown of accuracy on the test set. 

Test Set LAS UAS 

tut_test 89.88 93.73 

tut_test_law 92.85 96.18 

tut_test_rest 86.61 91.04 

A detailed analysis shows the following distribution of head errors according to the 

CPOS tag of the token, in the two subparts of the test set (Civil Law and Rest). 

Table 7. Breakdown of errors according to head CPOS 

CPOS 
Civil Law Rest 

Head Errors % Head Errors % 

NOUN 5 1 20 2 

PREP 48 8 67 12 

ART 8 1 19 4 

VERB 17 2 45 10 

PUNCT 31 10 109 27 

ADJ 6 3 8 3 

PRON 3 1 5 3 

ADV 4 3 15 11 

CONJ 26 13 134 19 

There is a considerable increase in errors for punctuation and conjunctions. Simply 

discarding the punctuation errors would increase the accuracy to 91.6 %. An analysis 

of the errors on punctuations led to grouping them in the following categories: 



Top error errors due to incorrect identification of parse tree root 

Parenthetical error in commas surrounding a parenthetical phrase 

Apposition error in commas separating an apposition 

Coordination errors in coordinate attachment 

Balance errors in balancing punctuations, quotes or parentheses. 

Indeed the parser has often difficulty in deciding where to attach a comma, since 

when the comma is reached it has constructed the trees for phrases preceding the 

comma, but it only can see individual tokens after the comma. 

For example, in the sentence “… draft, cioè una bozza …”, it would need to figure 

out that “bozza” relates to “draft”. However “bozza” is a child of “una”, which is a 

child of “cioè”, which is a child of comma, which is a child of “bozza”. Hence, in 

order to figure out that the comma is a way to relate “draft” with “bozza” it would 

have to look 4 token forward and be sure that the intervening tokens do not relate to 

something else. In order to handle this problem we have experimented with a variant 

of the parsing algorithm that delays Left reductions until the phrases on the right have 

been parsed. This requires also introducing an UnShift operation, in order to resume 

the Left reduction at the proper time. Unfortunately some early experiments with this 

algorithm showed negative effect on accuracy. 
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