
MaltParser at the EVALITA 2009
Dependency Parsing Task

Alberto Lavelli1, Johan Hall2, Jens Nilsson3, and Joakim Nivre2

1 FBK-irst,
via Sommarive 18, I-38123 Povo (TN), Italy

lavelli@fbk.eu
2 Department of Linguistics and Philology Uppsala University

Box 635, 75126 Uppsala, Sweden
{joakim.nivre,johan.hall}@lingfil.uu.se

3 School of Mathematics and Systems Engineering
Växjö University

35195 Växjö, Sweden
jens.nilsson@vxu.se

Abstract. This paper describes our participation in the EVALITA 2009 Depen-
dency Parsing Task with a version of MaltParser. Reusing feature models devel-
oped in the CoNLL shared task 2007, we evaluated four different parsing algo-
rithms implemented in MaltParser and found that the best results were achieved
with Covington’s non-projective parsing algorithm. In the final evaluation, our
system finished third in the main task and second in the pilot task.

Keywords: Dependency parsing, Italian.

1 Introduction

In the Dependency Parsing Task of EVALITA 2009, dependency parsers are applied to
two different Italian dependency treebanks, the Turin University Treebank (TUT4) and
the Italian Syntactic-Semantic Treebank (ISST-CoNLL [1]). A previous version of TUT
was used in 2007 for the first edition of the EVALITA Dependency Parsing Task [2],
while a previous version of ISST-CoNLL was used in the CoNLL-2007 shared task [3].

The parser used in this paper is MaltParser,5 a system for data-driven dependency
parsing that can be used to induce a parsing model from treebank data and to parse
new data using the induced model. MaltParser was one of the top performing systems
in the multilingual track of the CoNLL shared tasks on dependency parsing in 2006
and 2007 [4, 5]. In 2007, an ensemble system composed of six different instances of
MaltParser attained the highest labeled attachment score for Italian, while a single-
parser version of the system was ranked in sixth place. All the results reported in this
paper are for single-parser systems.

4 http://www.di.unito.it/˜tutreeb/
5 Freely available at http://www.maltparser.org/



2 System Description

MaltParser [6] implements the transition-based approach to dependency parsing, which
has two essential components:

– A nondeterministic transition system for mapping sentences to dependency trees
– A classifier that predicts the next transition for every possible system configuration

Given these two components, dependency parsing can be performed as greedy de-
terministic search through the transition system, guided by the classifier. With this tech-
nique, it is possible to perform parsing in linear time for projective dependency trees
and quadratic time for arbitrary (non-projective) trees [7].

2.1 Transition Systems

MaltParser has four built-in transition systems:

– Nivre’s arc-eager system [8]
– Nivre’s arc-standard system [9]
– Covington’s projective system [10]
– Covington’s non-projective system [10]

The two versions of Nivre’s transition system are inspired by shift-reduce parsing
and use a single stack to store partially processed words. The only difference is that the
arc-standard version builds trees strictly bottom-up, while the arc-eager version builds
structure incrementally from left to right. In both cases, the system is restricted to pro-
jective dependency trees. Covington’s system uses two stacks and can therefore process
arbitrary non-projective trees, but projectivity can be enforced by restricting the use of
the second stack. A more detailed description of all four systems, including proofs of
correctness and complexity can be found in [7].

2.2 Classifiers

Classifiers can be induced from treebank data using a wide variety of different machine
learning methods, but all experiments reported below use support vector machines with
a polynomial kernel, as implemented in the LIBSVM package [11] included in Malt-
Parser. The task of the classifier is to map a high-dimensional feature vector representa-
tion of a parser configuration to the optimal transition out of that configuration. Features
typically represent word forms, parts of speech and other linguistic attributes of words
that appear near the top of the stack(s) or in the input buffer. For the experiments re-
ported below, we have reused the feature representations that gave the best performance
for the various transition systems in the 2007 CoNLL shared tasks.6

6 More information about the features can be found at http://maltparser.org/conll/
conll07/.



2.3 Pseudo-Projective Parsing

As noted earlier, three of the four transition systems used in the experiments can in
principle only derive projective dependency trees. In order to overcome this limitation,
we have also experimented with pseudo-projective parsing [12], which is a technique
for recovering non-projective dependencies with a strictly projective parser. First, all
dependency trees in the training set are projectivized by moving arcs in the tree and
encoding information about these movements using complex arc labels. A parser trained
on these transformed training data will ideally learn to produce trees that are strictly
projective but where some arcs have complex labels indicating that they have undergone
movement. These arcs can then be moved back in a post-processing step, guided by
the extended arc labels, which results in non-projective trees. This technique has been
combined with the two versions of Nivre’s transition system and with the projective
version of Covington’s system.

3 Experimental results

We compared the four transition systems (Nivre standard, Nivre eager, Covington pro-
jective, Covington non-projective), in the first three cases with and without pseudo-
projective parsing, using the feature representations that produced the best results on
Italian for the MaltParser system at CoNLL-2007.

3.1 Results on the training set

First of all, we report the results obtained on the training set, used to choose the transi-
tion system for parsing the test set. Two different experimental setups were adopted for
the two treebanks. For TUT, we adopted a 10-fold cross validation on the entire training
set. For ISST, given that there was an explicit distinction between a training and a de-
velopment set, we trained the parser on the training set and tested it on the development
set. Tables 1 and 2 show the results for TUT and for ISST respectively.

In Table 1 the results of the two best performing systems at EVALITA 2007 are
reported too. Note that the best performing parser (UniTO Lesmo) was a rule-based
parser developed in parallel with TUT and tuned on the data set. The second parser
(UniPI Attardi) is a multilingual deterministic shift-reduce dependency parser that han-
dles nonprojective dependencies incrementally and learns by means of a second-order
multiclass averaged perceptron classifier.

In Table 2, besides the results on the ISST-EVALITA development set, the following
results obtained by parsers at CoNLL-2007 on Italian are reported: the best performing
system, MaltParser (single-parser system with ensemble system in parentheses), and
average performance.

3.2 Results on the test set

Given the results shown in Tables 1 and 2, Covington’s non-projective system was cho-
sen for performing the official run on both treebanks. In [13] the official results for the



Table 1. Dependency parsing – main subtask: TUT; results of 10-fold cross validation.

LAS UAS LA

Nivre standard 78.17 85.70 85.34
Nivre standard pseudo-projective 78.19 85.68 85.43
Nivre eager 80.65 88.42 86.97
Nivre eager pseudo-projective 80.58 88.34 86.95
Covington projective 83.27 87.70 88.96
Covington projective pseudo-projective 83.28 87.72 89.42
Covington non-projective 83.43 87.91 89.57

UniTo Lesmo @ EVALITA-2007 86.94 90.90 91.59
UniPi Attardi @ EVALITA-2007 77.88 88.43 83.00
Average @ EVALITA-2007 72.48 83.10 78.63

Table 2. Dependency parsing – pilot Subtask: ISST-CoNLL; results on development set.

LAS UAS LA

Nivre standard 76.57 81.17 84.20
Nivre standard pseudo-projective 79.31 83.80 88.29
Nivre eager 80.96 85.34 89.09
Nivre eager pseudo-projective 81.21 85.63 89.55
Covington projective 80.68 84.79 88.54
Covington projective pseudo-projective 81.12 85.13 89.26
Covington non-projective 81.99 85.80 90.12

Best @ CoNLL-2007 84.40 87.91
MaltParser @ CoNLL-2007 82.48 (84.40) 86.26 (87.77)
Average @ CoNLL-2007 78.06 82.45

dependency parsing task can be found. Our system obtained the third best result in the
main subtask (LAS: 86.50 vs. 88.73 and 88.68 of the two best performing systems) and
the second best result on the pilot subtask (LAS: 80.54 vs. 83.38 of the best performing
system). Note that the difference between the results of the two top-performing systems
in the main task is not statistically significant.

While the results on the TUT test set with the different transition systems (see Ta-
ble 3) are coherent with those performed on the training set, those on the ISST test set
(Table 4) show a different pattern. While on the training set the best system was Cov-
ington non-projective with Nivre eager pseudo-projective as second best, on the test
set the situation is the opposite. However, the difference in performance between the
first two results was evaluated not to be statistically significant (using the CoNLL-2007
procedure).



Table 3. Dependency parsing – main subtask: results obtained with different transition systems
on the test set.

LAS UAS LA

Nivre standard 81.75 90.13 86.36
Nivre standard pseudo-projective 81.56 89.73 86.36
Nivre eager 83.03 91.28 87.21
Nivre eager pseudo-projective 82.88 91.15 87.20
Covington projective 86.51 90.98 90.24
Covington projective pseudo-projective 86.48 90.98 90.77
Covington non-projective 86.50 90.88 90.96

Table 4. Dependency parsing – pilot subtask: results obtained with different transition systems
on the test set.

LAS UAS LA

Nivre standard 76.71 81.54 84.45
Nivre standard pseudo-projective 77.77 82.72 86.85
Nivre eager 80.84 85.55 88.70
Nivre eager pseudo-projective 81.12 85.59 89.32
Covington projective 79.92 84.11 87.79
Covington projective pseudo-projective 80.30 84.79 88.43
Covington non-projective 80.54 84.85 88.88

4 Conclusions

Although our system cannot compete with the best performing system on the two test
sets, our results are nevertheless fair given that we have not performed any feature
optimization but simply reused the models developed for the CoNLL shared task 2007.
It is therefore likely that the accuracy could be improved further.

The dependency representations produced by MaltParser trained on the ISST-CoNLL
treebank have been used by FBK participants in other EVALITA 2009 tasks, e.g., Tex-
tual Entailment and Local Entity Detection and Recognition. To make MaltParser us-
able within other more complex NLP systems (e.g., textual entailment, question an-
swering, . . . ) we plan to integrate it in the TextPro tool suite [14].

References

1. Montemagni, S., Barsotti, F., Battista, M., Calzolari, N., Corazzari, O., Lenci, A., Zampolli,
A., Fanciulli, F., Massetani, M., Raffaelli, R., Basili, R., Pazienza, M.T., Saracino, D., Zan-
zotto, F., Mana, N., Pianesi, F., Delmonte, R.: Building the Italian Syntactic-Semantic Tree-
bank. In: Abeillé, A. (ed.) Building and Using syntactically annotated corpora, pp. 189–210.
Kluwer, Dordrecht (2003)

2. Bosco, C., Mazzei, A., Lombardo, V., Attardi, G., Corazza, A., Lavelli, A., Lesmo, L., Satta,
G., Simi, M.: Comparing italian parsers on a common treebank: the EVALITA experience.



In: Proceedings of the Sixth International Conference on Language Resources and Evalua-
tion. Marrakech, Morocco (2008)

3. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The CoNLL
2007 shared task on dependency parsing. In: Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pp. 915–932. Prague, Czech Republic (2007)

4. Nivre, J., Hall, J., Nilsson, J., Eryiğit, G., Marinov, S.: Labeled pseudo-projective depen-
dency parsing with support vector machines. In: Proceedings of the 10th Conference on
Computational Natural Language Learning, pp. 221–225 (2006)

5. Hall, J., Nilsson, J., Nivre, J., Eryigit, G., Megyesi, B., Nilsson, M., Saers, M.: Single malt or
blended? A study in multilingual parser optimization. In: Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007, pp. 933–939. Prague, Czech Republic (2007)

6. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for dependency
parsing. In: Proceedings of the 5th International Conference on Language Resources and
Evaluation, pp. 2216–2219 (2006)

7. Nivre, J.: Algorithms for deterministic incremental dependency parsing. Computational Lin-
guistics, vol. 34, pp. 513–553 (2008)

8. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings of the
8th International Workshop on Parsing Technologies, pp. 149–160 (2003)

9. Nivre, J.: Incrementality in deterministic dependency parsing. In: Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL), pp. 50–
57 (2004)

10. Covington, M.A.: A fundamental algorithm for dependency parsing. In: Proceedings of the
39th Annual ACM Southeast Conference, pp. 95–102 (2001)

11. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. Software available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvm (2001)

12. Nivre, J., Nilsson, J.: Pseudo-projective dependency parsing. In: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 99–106 (2005)

13. Bosco, C., Montemagni, S., Mazzei, A., Lombardo, V., dell’Orletta, F., Lenci, A.: Evalita’09
Parsing Task: comparing dependency parsers and treebanks. In: Proceedings of EVALITA
2009 (2009)

14. Pianta, E., Girardi, C., Zanoli, R.: The TextPro tool suite. In: Proceedings of the Sixth Inter-
national Conference on Language Resources and Evaluation. Marrakech, Morocco (2008)


