
An Ensemble Model for the EVALITA 2011
Dependency Parsing Task?

Alberto Lavelli

FBK-irst,
via Sommarive 18, I-38123 Povo (TN), Italy

lavelli@fbk.eu

Abstract. This paper describes our participation in the EVALITA 2011 Depen-
dency Parsing Task with an ensemble model. In the 2009 edition we participated
with MaltParser, reusing feature models developed in the CoNLL shared task
2007. In 2011, we compared the results obtained by different parsing algorithms
implemented in MaltParser with an ensemble model made available by Mihai
Surdeanu. The best results were achieved by the ensemble model which was se-
lected for the official submission. In the final evaluation, our system finished third
in the dependency parsing task.
Keywords: Dependency parsing, ensemble model, Italian.

1 Introduction

In the Dependency Parsing Task of EVALITA 2011, dependency parsers are applied
to an Italian dependency treebank, the Turin University Treebank (TUT1). Previous
versions of TUT were used in 2007 and 2009 for the first two editions of the EVALITA
Dependency Parsing Task [3, 2].

In 2009 we participated in the Dependency Parsing Task with MaltParser,2 a system
for data-driven dependency parsing that can be used to induce a parsing model from
treebank data and to parse new data using the induced model [7]. MaltParser was one
of the top performing systems in the multilingual track of the CoNLL shared tasks
on dependency parsing in 2006 and 2007 [13, 6]. In the Dependency Parsing Task of
EVALITA 2009, dependency parsers were applied to two different Italian dependency
treebanks, the Turin University Treebank (TUT3) and the Italian Syntactic-Semantic
Treebank (ISST-CoNLL [8]).

In the following we briefly summarize the results on TUT in 2009. Table 1 shows
the results of different parsing algorithms implemented in MaltParser using 10-fold
cross validation on the TUT training set. Table 2 reports the results of different parsing
algorithms implemented in MaltParser on the TUT test set. The results of the two best
performing systems at EVALITA 2009 are reported too. Note that the best performing

? We thank Joakim Nivre and Mihai Surdeanu for making their parsers available and for kindly
answering our questions about their usage.

1 http://www.di.unito.it/˜tutreeb/
2 Freely available at http://www.maltparser.org/
3 http://www.di.unito.it/˜tutreeb/



Table 1. Dependency parsing 2009 – main subtask: TUT; results of 10-fold cross validation.

LAS UAS LA

Nivre standard 78.17 85.70 85.34
Nivre standard pseudo-projective 78.19 85.68 85.43
Nivre eager 80.65 88.42 86.97
Nivre eager pseudo-projective 80.58 88.34 86.95
Covington projective 83.27 87.70 88.96
Covington projective pseudo-projective 83.28 87.72 89.42
Covington non-projective 83.43 87.91 89.57

Table 2. Dependency parsing 2009 – main subtask: results obtained with different transition
systems on the test set.

LAS UAS LA

Nivre standard 81.75 90.13 86.36
Nivre standard pseudo-projective 81.56 89.73 86.36
Nivre eager 83.03 91.28 87.21
Nivre eager pseudo-projective 82.88 91.15 87.20
Covington projective 86.51 90.98 90.24
Covington projective pseudo-projective 86.48 90.98 90.77
Covington non-projective 86.50 90.88 90.96

UniTo Lesmo @ EVALITA-2009 88.73 92.28
UniPi Attardi @ EVALITA-2009 88.67 92.72

parser (UniTO Lesmo) was a rule-based parser developed in parallel with TUT and
tuned on the data set. The second parser (UniPI Attardi) is a multilingual deterministic
shift-reduce dependency parser that handles nonprojective dependencies incrementally
and learns by means of a second-order multiclass averaged perceptron classifier. In [2]
the official results for the dependency parsing task can be found. Our system obtained
the third best result in the main subtask (LAS: 86.50 vs. 88.73 and 88.68 of the two
best performing systems). Note that the difference between the results of the two top-
performing systems was not statistically significant.

2 Participation at EVALITA 2011

As said, in 2011 we compared two approaches which will be described in the two
following subsections.

2.1 MaltParser

MaltParser [12] implements the transition-based approach to dependency parsing, which
has two essential components:

– A nondeterministic transition system for mapping sentences to dependency trees



– A classifier that predicts the next transition for every possible system configuration

Given these two components, dependency parsing can be performed as greedy deter-
ministic search through the transition system, guided by the classifier. With this tech-
nique, it is possible to perform parsing in linear time for projective dependency trees
and quadratic time for arbitrary (non-projective) trees [11].

Transition Systems MaltParser has four built-in transition systems:

– Nivre’s arc-eager system [9]
– Nivre’s arc-standard system [10]
– Covington’s projective system [5]
– Covington’s non-projective system [5]

The two versions of Nivre’s transition system are inspired by shift-reduce parsing and
use a single stack to store partially processed words. The only difference is that the
arc-standard version builds trees strictly bottom-up, while the arc-eager version builds
structure incrementally from left to right. In both cases, the system is restricted to pro-
jective dependency trees. Covington’s system uses two stacks and can therefore process
arbitrary non-projective trees, but projectivity can be enforced by restricting the use of
the second stack. A more detailed description of all four systems, including proofs of
correctness and complexity can be found in [11].

Classifiers Classifiers can be induced from treebank data using a wide variety of differ-
ent machine learning methods, but all experiments reported below use support vector
machines with a polynomial kernel, as implemented in the LIBSVM package [4] in-
cluded in MaltParser. The task of the classifier is to map a high-dimensional feature
vector representation of a parser configuration to the optimal transition out of that con-
figuration. Features typically represent word forms, parts of speech and other linguistic
attributes of words that appear near the top of the stack(s) or in the input buffer. For the
experiments reported below, we have reused the feature representations that gave the
best performance for the various transition systems in the 2007 CoNLL shared tasks.4

Pseudo-Projective Parsing As noted earlier, three of the four transition systems used
in the experiments can in principle only derive projective dependency trees. In order
to overcome this limitation, we have also experimented with pseudo-projective parsing
[14], which is a technique for recovering non-projective dependencies with a strictly
projective parser. First, all dependency trees in the training set are projectivized by
moving arcs in the tree and encoding information about these movements using com-
plex arc labels. A parser trained on these transformed training data will ideally learn
to produce trees that are strictly projective but where some arcs have complex labels
indicating that they have undergone movement. These arcs can then be moved back in a
post-processing step, guided by the extended arc labels, which results in non-projective
trees. This technique has been combined with the two versions of Nivre’s transition
system and with the projective version of Covington’s system.

4 More information about the features can be found at http://maltparser.org/conll/
conll07/.



Table 3. Dependency parsing; results of 10-fold cross validation.

LAS UAS LA

Nivre standard 81.96 86.27 88.36
Nivre standard pseudo-projective 82.24 86.59 88.90
Nivre eager 84.54 88.86 90.40
Nivre eager pseudo-projective 84.47 88.77 90.55
Covington projective 83.88 88.29 89.07
Covington projective pseudo-projective 83.97 88.36 89.85
Covington non-projective 84.16 88.56 89.97
ensemble model 85.92 90.25 91.37

2.2 Ensemble Model

The ensemble model made available by Mihai Surdeanu [16]5 implements a linear in-
terpolation of several linear-time parsing models (all based on MaltParser). In particu-
lar, it combines five different variants of MaltParser (Nivre’s arc-standard left-to-right,
Nivre’s arc-eager left-to-right, Covington’s non projective left-to-right, Nivre’s arc-
standard right-to-left, Covington’s non projective right-to-left) as base parsers. Each
individual parser runs in its own thread, which means that, if a sufficient number of
cores are available, the overall runtime is essentially similar to a single MaltParser. The
resulting parser has state-of-the-art performance yet it remains very fast. We have used
the ensemble more or less as it is, simply exploiting the extended models for the base
parsers, which are slower but more accurate.

3 Experimental results

As in 2009, we compared the four transition systems (Nivre’s arc-standard, Nivre’s arc-
eager, Covington’s projective, Covington’s non-projective), in the first three cases with
and without pseudo-projective parsing, using the feature representations that produced
the best results on Italian for the MaltParser system at CoNLL-2007. In addition, this
year we assessed the performance of the ensemble model made available by Mihai
Surdeanu.

First of all, in Table 3 we report the results obtained on the training set, used to
choose the system for parsing the test set. We adopted a 10-fold cross validation on the
entire training set.

Given the results shown in Table 3, the ensemble model was chosen for performing
the official run. In [1] the official results for the dependency parsing task can be found.
Our system obtained the third best result (LAS: 88.62 vs. 91.23 and 89.88 of the two
best performing systems).

The results on the test set with the different transition systems (see Table 4) are
coherent with those obtained on the training set. The comparison between the perfor-
mance of the different transition systems is different from the one in 2009 when Cov-
ington algorithms performed better than Nivre eager ones. This is due to the fact that in

5 http://www.surdeanu.name/mihai/ensemble/



Table 4. Dependency parsing: results obtained with different systems on the test set.

LAS UAS LA

ensemble model 88.62 92.85 92.50
Nivre standard 84.83 89.30 89.69
Nivre standard pseudo-projective 85.26 89.62 90.16
Nivre eager 87.30 91.47 91.45
Nivre eager pseudo-projective 87.11 91.24 91.64
Covington projective 85.99 90.23 89.81
Covington projective pseudo-projective 86.25 90.42 90.70
Covington non-projective 86.72 90.91 90.89

2009 we made a mistake in the parameters of the Nivre algorithms that penalized their
performance.

4 Conclusions

Our system cannot compete with the best performing systems on the test set. However,
we consider our results fair given that we have used an off-the-shelf system and simply
trained it on the Italian treebank.

To make the parsers used in our participation to EVALITA usable within other more
complex NLP systems (e.g., textual entailment, question answering, . . . ) we are cur-
rently integrating them in the TextPro tool suite [15].

References

1. Bosco, C., Mazzei, A.: The Evalita 2011 Parsing Task: the dependency track. In: Working
Notes of EVALITA 2011 (2012)

2. Bosco, C., Montemagni, S., Mazzei, A., Lombardo, V., dell’Orletta, F., Lenci, A.: Evalita’09
Parsing Task: comparing dependency parsers and treebanks. In: Proceedings of the
EVALITA 2009 Workshop on Evaluation of NLP Tools for Italian (2009)

3. Bosco, C., Mazzei, A., Lombardo, V., Attardi, G., Corazza, A., Lavelli, A., Lesmo, L.,
Satta, G., Simi, M.: Comparing Italian parsers on a common treebank: the EVALITA ex-
perience. In: Proceedings of the Sixth International Conference on Language Resources
and Evaluation. Marrakech, Morocco (May 2008), http://www.lrec-conf.org/
proceedings/lrec2008/pdf/528_paper.pdf

4. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001), software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

5. Covington, M.A.: A fundamental algorithm for dependency parsing. In: Proceedings of the
39th Annual ACM Southeast Conference. pp. 95–102 (2001)

6. Hall, J., Nilsson, J., Nivre, J., Eryigit, G., Megyesi, B., Nilsson, M., Saers, M.: Single malt or
blended? a study in multilingual parser optimization. In: Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007. pp. 933–939. Prague, Czech Republic (June 2007),
http://www.aclweb.org/anthology/D/D07/D07-1097



7. Lavelli, A., Hall, J., Nilsson, J., Nivre, J.: MaltParser at the EVALITA 2009 dependency
parsing task. In: Proceedings of the EVALITA 2009 Workshop on Evaluation of NLP Tools
for Italian (2009)

8. Montemagni, S., Barsotti, F., Battista, M., Calzolari, N., Corazzari, O., Lenci, A., Zampolli,
A., Fanciulli, F., Massetani, M., Raffaelli, R., Basili, R., Pazienza, M.T., Saracino, D., Zan-
zotto, F., Mana, N., Pianesi, F., Delmonte, R.: Building the Italian Syntactic-Semantic Tree-
bank. In: Abeillé, A. (ed.) Building and Using syntactically annotated corpora, pp. 189–210.
Kluwer, Dordrecht (2003)

9. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings of the
8th International Workshop on Parsing Technologies (IWPT). pp. 149–160 (2003)

10. Nivre, J.: Incrementality in deterministic dependency parsing. In: Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL). pp. 50–
57 (2004)

11. Nivre, J.: Algorithms for deterministic incremental dependency parsing. Computational Lin-
guistics 34, 513–553 (2008)

12. Nivre, J., Hall, J., Nilsson, J.: MaltParser: A data-driven parser-generator for dependency
parsing. In: Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC). pp. 2216–2219 (2006)

13. Nivre, J., Hall, J., Nilsson, J., Eryiğit, G., Marinov, S.: Labeled pseudo-projective depen-
dency parsing with support vector machines. In: Proceedings of the 10th Conference on
Computational Natural Language Learning (CoNLL). pp. 221–225 (2006)

14. Nivre, J., Nilsson, J.: Pseudo-projective dependency parsing. In: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL). pp. 99–106 (2005)

15. Pianta, E., Girardi, C., Zanoli, R.: The TextPro tool suite. In: Proceedings of the
Sixth International Conference on Language Resources and Evaluation. Marrakech,
Morocco (May 2008), http://www.lrec-conf.org/proceedings/lrec2008/
pdf/645_paper.pdf

16. Surdeanu, M., Manning, C.D.: Ensemble models for dependency parsing: Cheap and good?
In: Proceedings of the Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-2010). pp. 649–652. Los Angeles, California (June
2010), http://www.aclweb.org/anthology/N10-1091


