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Abstract. We present a simplified Data-Oriented Parsing (DOP) for-
malism for learning the constituency structure of Italian sentences. In
our approach we try to simplify the original DOP methodology by con-
straining the number and type of fragments we extract from the training
corpus. We provide some examples of the types of constructions that
occur more often in the treebank, and quantify the performance of our
grammar on the constituency parsing task.
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1 Introduction

The Data-Oriented Parsing (DOP) framework, proposed in [1] and developed
in [2], has become one of the most successful methods in constituency parsing
(cf. [3], [4]). The main idea behind this methodology is to extract as many as pos-
sible fragments from the training corpus, and recombine them via a probabilistic
generative model, in order to parse novel sentences. In the current EVALITA’09
task we aim at simplifying the original DOP methodology by constraining the
number of fragments we extract from the training corpus. In particular we main-
tain only those fragments which are occurring at least two times in the training
data. The main motivation behind this choice is to keep in our grammar only
those fragments for which there is an empirical evidence about their reusability.

1.1 Data-Oriented Parsing

A DOP grammar can be described as a collection T of fragments. Figure 1
shows an example of four fragments that are extracted from the training parse
tree depicted in figure 2, belonging to the TUT1 training corpus. Fragments are
defined in such a way that every node is either a non-terminal leaf (with no more
daughters), or has the exact same daughters as in the original tree.

Two elementary trees α and β can be combined by means of the substitution
operation, α ◦ β, iff the root of β has the same label of the leftmost nonterminal
leaf of α. The result of this operation is a unified fragment which corresponds to
α with the leftmost nonterminal leaf replaced with the entire fragment β. The
substitution operation can be applied iteratively: α ◦ β ◦ γ = (α ◦ β) ◦ γ.
1 Turin University Treebank: http://www.di.unito.it/tutreeb , see also [5].
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Fig. 1: Example of elementary trees of depth 4, 3, 3, and 2.
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Fig. 2: Parse tree of the sentence “Ogni mezzo di prova è ammesso” (Every piece of
evidence is admitted).

When the tree resulting from a series of substitution operations is a complete
parse tree, i.e. all its leaf nodes are lexical nodes, we define the sequence of the
elementary trees used in the operations as a derivation of the complete parse
tree. Considering the 4 elementary trees in figure 1, τ1 ◦ τ2 ◦ τ3 ◦ τ4 constitutes
a possible derivation of the complete parse tree of Figure 2.

A stochastic instantiation of this grammar can be defined as follow: for ev-
ery τ ∈ T , the probability of using τ in a substitution operation is defined as
P (τ) = f(τ,T )

f(root(τ),T ) , where the numerator returns the frequency of τ in T , and
the denominator the number of fragments in T having root(τ) as root node. If
a derivation d is constituted by n elementary trees τ1 ◦ τ2 ◦ . . . ◦ τn, the proba-
bility of the derivation is calculated as: P (d) =

∏n
i=1 P (τi). Given that we have

multiple derivations d1, d2, . . . , dm for the same parse tree t, the probability of t
is defined as: P (t) =

∑m
i=1 P (di).



2 Implementation

In order to build our DOP grammar we have extracted all the fragments occur-
ring in the 2,200 training structures2 two or more times, by using an algorithm
which is analogous to the one presented in [6]. In figure 3 we show the distribu-
tion of the frequencies of the extracted fragments with respect to their depths.
In figure 4 we report the most common fragments containing the verb è (is),
which can be seen as a collection of its main valency structures appearing in the
annotated data. In addition to these fragments we have added in our grammar
all CFG rules that occur exactly once in the training corpus (9,497 rules).

We have converted the DOP grammar to an isomorphic CFG (more details
in [7]), and used the BitPar parser in [8] to parse the 200 sentences in the test set.
For every test sentence we have approximated the most probable parse tree by
taking the 1,000 most probable derivations, summing the probabilities of those
yielding the same parse tree, and selecting the most probable.

3 Results

Table 4 shows a summary of the parsing results of our system, which achieves
75.76% in labeled F-score. More detailed analyses on the results are given in
figure 6 where we show the accuracy within each single label: all main categories
(NP, PP, VP, S) achieve an accuracy which is in line with the overall score of
the system. Further investigations presented in figure 5 and in figure 7 suggest
that the majority of parsing errors are due to crossing brackets among these four
categories; wrongly labeled constituents are in fact a minor source of error.

4 Conclusions

We have presented a simplified DOP formalism for learning the constituency
structure of Italian sentences. As in previous works (cf. [7], [9], [10]) the main
motivation was to try to build a grammar based on those structures which are lin-
guistically relevant, in this case those for which there is some empirical evidence
about their reusability. The results are poor relative to the same methodology
applied to English treebanks. One of the main reasons is certainly the smaller
size of the training corpus used in the current shared task: as in other types of
exemplar-based learning techniques, DOP models require a large amount of data
in order to achieve high accuracy. We nevertheless believe that few more steps
could contribute to improve results within the same framework, in particular
the use of proper smoothing techniques over the fragments as in [11], and an
investigation over different probability distributions.

Acknowledgments We gratefully acknowledge funding by the Netherlands Orga-
nization for Scientific Research (NWO): the author is funded through a Vici-grant
“Integrating Cognition” (277.70.006) to Rens Bod.

2 We have removed all empty nodes, traces, and functional labels from the corpus.



Depth Types Tokens

1 3364 88074
2 5818 72718
3 8768 60651
4 8328 37745
5 4795 16047
6 1839 5035
7 560 1343
8 118 248
9 29 61
10 6 13
11 2 4
13 1 2
14 1 2
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Fig. 3: Distribution of the frequency of the extracted 33,629 fragments with respect to
their depths. All these fragments occur at least two times in the training corpus.
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Fig. 4: The most frequent fragments in the grammar containing the verb è (is), when
it is a main verb (VMA∼RE) and not an auxiliary (VAU∼RE).
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