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Processing in the FBK transcription system (1/2)

◮ Segmentation. The audio is split into segments separated by

silence.

◮ Classification. An HMM-based classifier assigns to each

segment one of a number of class labels: noise, music,

male-speech, female-speech, etc... Noise and music segments

are excluded from further processing.

◮ Clustering. Within each class, segments are grouped into

homogeneous clusters by means of a BIC-based agglomerative

clustering.

◮ First acoustic normalization. Unsupervised CMLSN is performed

with respect to a GMM, producing a specific affine transformation

for each cluster.



Processing in the FBK transcription system (2/2)

◮ Feature projection. The normalized features are projected into a

lower dimensional feature space by applying an HDA linear

transform.

◮ First recognition step. The decoder is run on the normalized and

projected features using a proper Acoustic Model and a n-gram

Language Model, producing the first recognition hypothesis.

◮ Second acoustic normalization. Supervised CMLSN is performed

with respect to a set of simple triphone target-models, using the

output of the previous step as supervision.

◮ Second recognition step. The decoder is run again on the

resulting features using a proper Acoustic Model and a n-gram

Language Model, producing the final hypothesis.

The processing flow takes advantage of a load-balancing

dispatcher/collector to distribute the computational effort among

several machines.



CMLLR-based acoustic normalization (1/2)

1 M.J.F. Gales, “Maximum likelihood linear transformations . . . ” Computer Speech & Language, 1998
2 D. Giuliani et al., “Speaker normalization through constrained MLLR . . . ” in Proc. ICSLP, 2004

CMLLR = Constrained Maximum Likelihood Linear Regression1.

CMLSN = CMLLR-based Speaker Normalization2.

◮ Techniques meant to reduce irrelevant variability in speech data.

◮ Given a target Acoustic Model and a transcription of a cluster of

segments, computes an affine transformation that maximizes the

likelihood of transformed data with respect to the model.

◮ In original CMLLR, the target model coincide with the recognition

model, and the procedure can be seen as a feature-space

transformation dual form of a model-space adaptation.



CMLLR-based acoustic normalization (2/2)

1 G.Stemmer et al, “Adaptive training using simple target models” in Proc. ICASSP 2005

◮ In CMLSN, target and recognition models are different.

◮ It has been observed1 that, in supervised normalization, using

simple target triphone models can be more effective.

◮ If the target AM is made of a single generic model, no

supervision is required, and CMLSN can be effectively applied

without any preliminary recognition step.

The CMLSN procedure is also applied to training data before ML

training of the AM, thus producing a normalized AM. This can be

seen as a variant of Speaker Adaptive Training.



HDA - Heteroscedastic Discriminant Analysis

1 N.Kumar et al., “Heteroscedastic discriminant analysis . . . ”, Speech Communication, 1998
2 G.Stemmer et al.,“Integration of Heteroscedastic Linear Discriminant Analysis . . . ”, Proc. ICASSP 2006

◮ A dimensionality reduction technique, aiming at preserving the

information of a large feature vector in a more convenient

compact vector1.

◮ Given a set of target classes and labeled data, applies a

Maximum Likelihood criterion to estimate a linear transform that

separates the feature space in a significant subspace and a

nuisance subspace, that does not contain discriminant

information.

◮ In ASR, the target classes are usually triphone HMM states.

◮ Its application at run-time only consists in multiplying the feature

vectors by a rectangular matrix.

◮ Can be effectively integrated with CMLSN2.



LM representation (1/2)

The FBK system employs a static representation of the LM, i.e. a

large network (graph) embodying phonetic and linguistic

constraints, usually 4-grams.

Pros:

◮ Decoding does not assume any particular structure of LM, as

soon as it can be compiled into a network.

◮ No run-time overhead due to dynamic access to the language

model and application of the lexicon.

Cons:

◮ The memory required for storing the compiled network is larger

than that required for storing the LM and lexicon separately.

Except for the network, other information describing the search

status are allocated dinamically.



LM representation (2/2)

To reduce memory requirements, several techniques are adopted:

1. Shared-tail topology: the redundancy in the tree-based

representation of an n-gram LM is reduced by avoiding

duplication in the tree branches.

2. Network reduction: an “approximate optimization” method is

applied that iteratively collapses equivalent nodes.

3. Chain merging: sequences of arcs connecting nodes with unique

input and output are represented by a single “multi-arc”.

Techniques 2 and 3 are not limited to networks derived from

n-grams, and tipically reduce the size by ≈50%.

Moreover, if several instances of the decoder use the same

network on a machine, they can load it in shared memory.
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Models for Evalita (1/2)

Acoustic Features

◮ 13 MFCC + 1st,2nd,3rd derivatives

→ 52 features, reduced to 39 by HDA after normalization.

◮ Segment-based average normalization

Acoustic Model(s)

◮ Cross-word triphone HMMs: ≈8700 models with ≈6700 tied

states, and ≈37000 Gaussians. Average mixture length is 94.

◮ State tying based on Phonetic Decision Tree.

◮ Gaussian tying based on Phonetically Tied Mixtures.

◮ Different models (of approximately same size) for first and

second recognition steps.

◮ A single GMM with 1024 components on the 52-dimensional

feature space for unsupervised normalization.

◮ A set of simple tied-states triphone models (one Gaussian per

state) for supervised normalization.



Models for Evalita (2/2)

Language Model

◮ 4-gram Language Models estimated with Kneser-Ney smoothing

on the given corpus of ≈32M words.

◮ LM size: 67K words, 3.37M + 2.34M + 2.33M n-grams.

◮ Network size after integration with lexicon:

6.2M nodes, 6.3M labeled arcs, 10.4M empty arcs.

◮ For the contrained transcription task, the baseline LM was

adapted to the 63K words of the session report by means of

mixture adaptation.

◮ The same procedure was followed for generating the automatic

transcription of the training data.



Results

◮ Results show that, on the given task, reasonable performance

can be achieved with the provided data:

Task WER (%)

official

(lms=7)

fixed

(lms=10)

Transcription 8.4 7.5

Constrained Transcription 7.2 6.1

◮ Run time is approximately 3×real-time on a single CPU.

◮ A mistake was made in the official submission: a default LM

scale was used, not appropriate for the given models. After

modifying this single parameter, performance changed as shown

in the table.


