UNIBA: Super Sense Tagging at EVALITA 2011

Pierpaolo Basile

basilepp@di.uniba.it DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF BARI "A. MORO" (ITALY)

Laboratorio per l'Acquisizione della Conoscenza e l'Apprendimento nelle Macchine

EVALITA 2011, Rome, 24-25 January 2012

→ 3 → 4 3

Motivation

- Super Sense Tagging as sequence labelling problem [1]
- Supervised approach
 - lexical/linguistic features
 - distributional features
- Main motivation: tackle the data sparseness problem using word similarity in a WordSpace

- 4 @ > - 4 @ > - 4 @ >

WordSpace

- You shall know a word by the company it keeps! [5]
- Words are represented as points in a geometric space
- Words are related if they are close in that space

memory floppy_disk ram chip disk hard_disk printer software computer workstation 05 pc device operating_system linux mouse tux mice rabbit rat penguin animal dog insect cat monkey

(日) (同) (三) (三)

WordSpace: Random Indexing

Random Indexing [4]

- builds WordSpace using document as context
- no matrix factorization required
- word-vectors are inferred using an incremental strategy
 - a random vector is assigned to each context
 - sparse, high-dimensional and ternary ({-1, 0, 1})
 - a small number of randomly distributed non-zero elements
 - andom vectors are accumulated incrementally by analyzing contexts in which terms occur
 - word-vector assigned to each word is the sum of the random vectors of the contexts in which the term occur

イロト イポト イヨト イヨト 二日

WordSpace: Random Indexing

Formally Random Indexing is based on Random Projection [2]

$$A^{n,m} \cdot R^{m,k} = B^{n,k} \quad k < m \tag{1}$$

where $A^{n,m}$ is, for example, a term-doc matrix

After projection the distance between points is preserved: $d = c \cdot d_r$

WordSpace: context

Two WordSpaces using a different definition of context

- *Wikipedia_p*: a random vector is assigned to each **Wikipedia page**
- Wikipedia_c: a random vector is assigned to each Wikipedia category
 - categories can identify more general concepts in the same way of super-senses

Table: WordSpaces info

WordSpace	С	D
Wikipedia _p	1,617,449	4,000
Wikipedia _c	98,881	1,000

- 4 @ ▶ 4 @ ▶ 4 @ ▶

- C=number of contexts
- D=vector dimension

Methodology

- Learning method: LIBLINEAR (SVM) [3]
- Features
 - word, lemma, PoS-tag, the first letter of the PoS-tag
 - the super-sense assigned to the most frequent sense of the word computed according to sense frequency in MultiSemCor
 - o word starts with an upper-case character
 - grammatical conjugation (e.g. -are, -ere and -ire for Italian verbs)
 - Idistributional features: word-vector in the WordSpace

(日) (同) (三) (三)

Evaluation

Table: Results of the evaluation

System	A	Р	R	F
close	0.8696	0.7485	0.7583	0.7534
no_distr_feat	0.8822	0.7728	0.7818	0.7773
Wikipedia _c	0.8877	0.7719	0.8020	0.7866
Wikipedia _p	0.8864	0.7700	0.7998	0.7846

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Final Remarks

- Main motivation: distributional features tackle data sparseness problem in SST task
 - increment in recall proves our idea
- Further work: try a different supervised approach more suitable for sequence labelling task
 - in this first attempt we are not interested in the learning method performance itself

- 4 @ > - 4 @ > - 4 @ >

That's all folks!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For Further Reading I

- Ciaramita, M., Altun, Y.: Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. pp. 594–602. Association for Computational Linguistics (2006)
- Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures & Algorithms 22(1), 60–65 (2003)
- Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

・ロン ・四 ・ ・ ヨン ・ ヨン

For Further Reading II

- Sahlgren, M.: An introduction to random indexing. In: Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE. vol. 5 (2005)
- Sahlgren, M.: The Word-Space Model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces. Ph.D. thesis, Stockholm: Stockholm University, Faculty of Humanities, Department of Linguistics (2006)

(日) (周) (三) (三)